Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Plant Cell logoLink to The Plant Cell
. 1997 Oct;9(10):1805–1814. doi: 10.1105/tpc.9.10.1805

The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H(+)-ATPase.

T Jahn 1, A T Fuglsang 1, A Olsson 1, I M Brüntrup 1, D B Collinge 1, D Volkmann 1, M Sommarin 1, M G Palmgren 1, C Larsson 1
PMCID: PMC157023  PMID: 9368417

Abstract

Accumulating evidence suggests that 14-3-3 proteins are involved in the regulation of plant plasma membrane H(+)-ATPase activity. However, it is not known whether the 14-3-3 protein interacts directly or indirectly with the H(+)-ATPase. In this study, detergent-solubilized plasma membrane H(+)-ATPase isolated from fusicoccin-treated maize shoots was copurified with the 14-3-3 protein (as determined by protein gel blotting), and the H(+)-ATPase was recovered in an activated state. In the absence of fusicoccin treatment, H(+)-ATPase and the 14-3-3 protein were well separated, and the H(+)-ATPase was recovered in a nonactivated form. Trypsin treatment removed the 10-kD C-terminal region from the H(+)-ATPase as well as the 14-3-3 protein. Using the yeast two-hybrid system, we could show a direct interaction between Arabidopsis 14-3-3 GF14-phi and the last 98 C-terminal amino acids of the Arabidopsis AHA2 plasma membrane H(+)-ATPase. We propose that the 14-3-3 protein is a natural ligand of the plasma membrane H(+)-ATPase, regulating proton pumping by displacing the C-terminal autoinhibitory domain of the H(+)-ATPase.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aitken A. 14-3-3 and its possible role in co-ordinating multiple signalling pathways. Trends Cell Biol. 1996 Sep;6(9):341–347. doi: 10.1016/0962-8924(96)10029-5. [DOI] [PubMed] [Google Scholar]
  2. Baunsgaard L., Venema K., Axelsen K. B., Villalba J. M., Welling A., Wollenweber B., Palmgren M. G. Modified plant plasma membrane H(+)-ATPase with improved transport coupling efficiency identified by mutant selection in yeast. Plant J. 1996 Sep;10(3):451–458. doi: 10.1046/j.1365-313x.1996.10030451.x. [DOI] [PubMed] [Google Scholar]
  3. Bearden J. C., Jr Quantitation of submicrogram quantities of protein by an improved protein-dye binding assay. Biochim Biophys Acta. 1978 Apr 26;533(2):525–529. doi: 10.1016/0005-2795(78)90398-7. [DOI] [PubMed] [Google Scholar]
  4. Brandt J., Thordal-Christensen H., Vad K., Gregersen P. L., Collinge D. B. A pathogen-induced gene of barley encodes a protein showing high similarity to a protein kinase regulator. Plant J. 1992 Sep;2(5):815–820. [PubMed] [Google Scholar]
  5. Briskin D. P., Reynolds-Niesman I. Change in Target Molecular Size of the Red Beet Plasma Membrane ATPase during Solubilization and Reconstitution. Plant Physiol. 1989 Jun;90(2):394–397. doi: 10.1104/pp.90.2.394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Celenza J. L., Eng F. J., Carlson M. Molecular analysis of the SNF4 gene of Saccharomyces cerevisiae: evidence for physical association of the SNF4 protein with the SNF1 protein kinase. Mol Cell Biol. 1989 Nov;9(11):5045–5054. doi: 10.1128/mcb.9.11.5045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De Boer A. H., Van der Molen G. W., Prins H. B., Korthout H. A., Van der Hoeven P. C. Aluminum fluoride and magnesium, activators of heterotrimeric GTP-binding proteins, affect high-affinity binding of the fungal toxin fusicoccin to the fusicoccin-binding protein in oat root plasma membranes. Eur J Biochem. 1994 Feb 1;219(3):1023–1029. doi: 10.1111/j.1432-1033.1994.tb18585.x. [DOI] [PubMed] [Google Scholar]
  8. De Michelis M. I., Pugliarello M. C., Rasi-Caldogno F. Fusicoccin Binding to Its Plasma Membrane Receptor and the Activation of the Plasma Membrane H-ATPase: I. Characteristics and Intracellular Localization of the Fusicoccin Receptor in Microsomes from Radish Seedlings. Plant Physiol. 1989 May;90(1):133–139. doi: 10.1104/pp.90.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. De Michelis M. I., Rasi-Caldogno F., Pugliarello M. C., Olivari C. Fusicoccin Binding to Its Plasma Membrane Receptor and the Activation of the Plasma Membrane H+-ATPase (III. Is There a Direct Interaction between the Fusicoccin Receptor and the Plasma Membrane H+-ATPase?). Plant Physiol. 1996 Mar;110(3):957–964. doi: 10.1104/pp.110.3.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Durfee T., Becherer K., Chen P. L., Yeh S. H., Yang Y., Kilburn A. E., Lee W. H., Elledge S. J. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 1993 Apr;7(4):555–569. doi: 10.1101/gad.7.4.555. [DOI] [PubMed] [Google Scholar]
  11. Huang L. S., Berry E. A. Purification and characterization of the proton translocating plasma membrane ATPase of red beet storage tissue. Biochim Biophys Acta. 1990 Jun 19;1039(2):241–252. doi: 10.1016/0167-4838(90)90192-i. [DOI] [PubMed] [Google Scholar]
  12. Johansson F., Olbe M., Sommarin M., Larsson C. Brij 58, a polyoxyethylene acyl ether, creates membrane vesicles of uniform sidedness. A new tool to obtain inside-out (cytoplasmic side-out) plasma membrane vesicles. Plant J. 1995 Jan;7(1):165–173. doi: 10.1046/j.1365-313x.1995.07010165.x. [DOI] [PubMed] [Google Scholar]
  13. Korthout H. A., de Boer A. H. A fusicoccin binding protein belongs to the family of 14-3-3 brain protein homologs. Plant Cell. 1994 Nov;6(11):1681–1692. doi: 10.1105/tpc.6.11.1681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lu G., Rooney M. F., Wu K., Ferl R. J. Five cDNAs encoding Arabidopsis GF14 proteins. Plant Physiol. 1994 Aug;105(4):1459–1460. doi: 10.1104/pp.105.4.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Marra M., Fullone M. R., Fogliano V., Pen J., Mattei M., Masi S., Aducci P. The 30-kilodalton protein present in purified fusicoccin receptor preparations is a 14-3-3-like protein. Plant Physiol. 1994 Dec;106(4):1497–1501. doi: 10.1104/pp.106.4.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Meyer C., Feyerabend M., Weiler E. W. Fusicoccin-Binding Proteins in Arabidopsis thaliana (L.) Heynh. : Characterization, Solubilization, and Photoaffinity Labeling. Plant Physiol. 1989 Feb;89(2):692–699. doi: 10.1104/pp.89.2.692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Michelet B., Boutry M. The Plasma Membrane H+-ATPase (A Highly Regulated Enzyme with Multiple Physiological Functions). Plant Physiol. 1995 May;108(1):1–6. doi: 10.1104/pp.108.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Moorhead G., Douglas P., Morrice N., Scarabel M., Aitken A., MacKintosh C. Phosphorylated nitrate reductase from spinach leaves is inhibited by 14-3-3 proteins and activated by fusicoccin. Curr Biol. 1996 Sep 1;6(9):1104–1113. doi: 10.1016/s0960-9822(02)70677-5. [DOI] [PubMed] [Google Scholar]
  20. Muslin A. J., Tanner J. W., Allen P. M., Shaw A. S. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell. 1996 Mar 22;84(6):889–897. doi: 10.1016/s0092-8674(00)81067-3. [DOI] [PubMed] [Google Scholar]
  21. Oecking C., Eckerskorn C., Weiler E. W. The fusicoccin receptor of plants is a member of the 14-3-3 superfamily of eukaryotic regulatory proteins. FEBS Lett. 1994 Sep 26;352(2):163–166. doi: 10.1016/0014-5793(94)00949-x. [DOI] [PubMed] [Google Scholar]
  22. Palmgren M. G. An H-ATPase Assay: Proton Pumping and ATPase Activity Determined Simultaneously in the Same Sample. Plant Physiol. 1990 Nov;94(3):882–886. doi: 10.1104/pp.94.3.882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Palmgren M. G., Larsson C., Sommarin M. Proteolytic activation of the plant plasma membrane H(+)-ATPase by removal of a terminal segment. J Biol Chem. 1990 Aug 15;265(23):13423–13426. [PubMed] [Google Scholar]
  24. Palmgren M. G., Sommarin M., Serrano R., Larsson C. Identification of an autoinhibitory domain in the C-terminal region of the plant plasma membrane H(+)-ATPase. J Biol Chem. 1991 Oct 25;266(30):20470–20475. [PubMed] [Google Scholar]
  25. Pardo J. M., Serrano R. Structure of a plasma membrane H+-ATPase gene from the plant Arabidopsis thaliana. J Biol Chem. 1989 May 25;264(15):8557–8562. [PubMed] [Google Scholar]
  26. Rasi-Caldognov F., Pugliarello M. C., Olivari C., De Michelis M. I. Controlled Proteolysis Mimics the Effect of Fusicoccin on the Plasma Membrane H+-ATPase. Plant Physiol. 1993 Oct;103(2):391–398. doi: 10.1104/pp.103.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Roberts G., Berberian G., Beauge L. Evidence for Two Catalytic Sites in the Functional Unit of H+-ATPase from Higher Plants. Plant Physiol. 1995 Jun;108(2):813–819. doi: 10.1104/pp.108.2.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Xing T., Higgins V. J., Blumwald E. Regulation of Plant Defense Response to Fungal Pathogens: Two Types of Protein Kinases in the Reversible Phosphorylation of the Host Plasma Membrane H+-ATPase. Plant Cell. 1996 Mar;8(3):555–564. doi: 10.1105/tpc.8.3.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. de Boer A. H., Watson B. A., Cleland R. E. Purification and identification of the fusicoccin binding protein from oat root plasma membrane. Plant Physiol. 1989;89:250–259. doi: 10.1104/pp.89.1.250. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES