Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1997 Sep;9(9):1527–1545. doi: 10.1105/tpc.9.9.1527

A novel cell ablation strategy blocks tobacco anther dehiscence.

T P Beals 1, R B Goldberg 1
PMCID: PMC157031  PMID: 9338959

Abstract

We utilized a new cell ablation strategy to ablate specific anther cell types involved in the dehiscence process. The tobacco TA56 gene promoter is active within the circular cell cluster, stomium, and connective regions of the anther at different developmental stages. We introduced a cytotoxic TA56/barnase gene into tobacco plants together with three different anticytotoxic barstar genes. The anticytotoxic barstar genes were used to protect subsets of anther cell types from the cytotoxic effects of the TA56/barnase gene. The chimeric barstar genes were fused with (1) the tobacco TP12 gene promoter that is active at high levels in most anther cell types; (2) the soybean lectin gene promoter that is active earlier in the connective, and at lower levels in the circular cell cluster and stomium, than is the TA56 promoter; and (3) the tobacco TA20 gene promoter that is active at high levels in most anther cell types but has a different developmental profile than does the TP12 promoter. Normal anther development and dehiscence occurred in plants containing the TA56/barnase and TP12/barstar genes, indicating that barstar protects diverse anther cell types from the cytotoxic effects of barnase. Anthers containing the TA56/barnase and lectin/barstar genes also developed normally but failed to dehisce because of extensive ablation of the circular cell cluster, stomium, and contiguous connective regions. Anthers containing the TA56/barnase and TA20/barstar genes failed to dehisce as well. However, only the stomium region was ablated in these anthers. The connective, circular cell cluster, and adjacent wall regions were protected from ablation by the formation of barnase/barstar complexes. We conclude that anther dehiscence at flower opening depends on the presence of a functional stomium region and that chimeric barnase and barstar genes containing promoters that are active in several overlapping cell types can be used for targeted cell ablation experiments.

Full Text

The Full Text of this article is available as a PDF (6.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bellen H. J., D'Evelyn D., Harvey M., Elledge S. J. Isolation of temperature-sensitive diphtheria toxins in yeast and their effects on Drosophila cells. Development. 1992 Mar;114(3):787–796. doi: 10.1242/dev.114.3.787. [DOI] [PubMed] [Google Scholar]
  2. Bernstein A., Breitman M. Genetic ablation in transgenic mice. Mol Biol Med. 1989 Dec;6(6):523–530. [PubMed] [Google Scholar]
  3. Calzone F. J., Britten R. J., Davidson E. H. Mapping of gene transcripts by nuclease protection assays and cDNA primer extension. Methods Enzymol. 1987;152:611–632. doi: 10.1016/0076-6879(87)52069-9. [DOI] [PubMed] [Google Scholar]
  4. Colombo L., Franken J., Van der Krol A. R., Wittich P. E., Dons H. J., Angenent G. C. Downregulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development. Plant Cell. 1997 May;9(5):703–715. doi: 10.1105/tpc.9.5.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dhaese P., De Greve H., Gielen J., Seurinck L., Van Montagu M., Schell J. Identification of sequences involved in the polyadenylation of higher plant nuclear transcripts using Agrobacterium T-DNA genes as models. EMBO J. 1983;2(3):419–426. doi: 10.1002/j.1460-2075.1983.tb01439.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Drews G. N., Beals T. P., Bui A. Q., Goldberg R. B. Regional and cell-specific gene expression patterns during petal development. Plant Cell. 1992 Nov;4(11):1383–1404. doi: 10.1105/tpc.4.11.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Evans G. A. Dissecting mouse development with toxigenics. Genes Dev. 1989 Mar;3(3):259–263. doi: 10.1101/gad.3.3.259. [DOI] [PubMed] [Google Scholar]
  8. Goldberg R. B., Beals T. P., Sanders P. M. Anther development: basic principles and practical applications. Plant Cell. 1993 Oct;5(10):1217–1229. doi: 10.1105/tpc.5.10.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goldberg R. B., Hoschek G., Vodkin L. O. An insertion sequence blocks the expression of a soybean lectin gene. Cell. 1983 Jun;33(2):465–475. doi: 10.1016/0092-8674(83)90428-2. [DOI] [PubMed] [Google Scholar]
  10. Goldman M. H., Goldberg R. B., Mariani C. Female sterile tobacco plants are produced by stigma-specific cell ablation. EMBO J. 1994 Jul 1;13(13):2976–2984. doi: 10.1002/j.1460-2075.1994.tb06596.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hartley R. W. Barnase and barstar: two small proteins to fold and fit together. Trends Biochem Sci. 1989 Nov;14(11):450–454. doi: 10.1016/0968-0004(89)90104-7. [DOI] [PubMed] [Google Scholar]
  12. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kamalay J. C., Goldberg R. B. Organ-specific nuclear RNAs in tobacco. Proc Natl Acad Sci U S A. 1984 May;81(9):2801–2805. doi: 10.1073/pnas.81.9.2801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kamalay J. C., Goldberg R. B. Regulation of structural gene expression in tobacco. Cell. 1980 Apr;19(4):935–946. doi: 10.1016/0092-8674(80)90085-9. [DOI] [PubMed] [Google Scholar]
  15. Kandasamy M. K., Thorsness M. K., Rundle S. J., Goldberg M. L., Nasrallah J. B., Nasrallah M. E. Ablation of Papillar Cell Function in Brassica Flowers Results in the Loss of Stigma Receptivity to Pollination. Plant Cell. 1993 Mar;5(3):263–275. doi: 10.1105/tpc.5.3.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lindstrom J. T., Vodkin L. O., Harding R. W., Goeken R. M. Expression of soybean lectin gene deletions in tobacco. Dev Genet. 1990;11(2):160–167. doi: 10.1002/dvg.1020110206. [DOI] [PubMed] [Google Scholar]
  17. McLaughlin S. K., Margolskee R. F. 33P is preferable to 35S for labeling probes used in in situ hybridization. Biotechniques. 1993 Sep;15(3):506–511. [PubMed] [Google Scholar]
  18. Moffat K. G., Gould J. H., Smith H. K., O'Kane C. J. Inducible cell ablation in Drosophila by cold-sensitive ricin A chain. Development. 1992 Mar;114(3):681–687. doi: 10.1242/dev.114.3.681. [DOI] [PubMed] [Google Scholar]
  19. O'Kane C. J., Moffat K. G. Selective cell ablation and genetic surgery. Curr Opin Genet Dev. 1992 Aug;2(4):602–607. doi: 10.1016/s0959-437x(05)80179-0. [DOI] [PubMed] [Google Scholar]
  20. Okamuro J. K., Jofuku K. D., Goldberg R. B. Soybean seed lectin gene and flanking nonseed protein genes are developmentally regulated in transformed tobacco plants. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8240–8244. doi: 10.1073/pnas.83.21.8240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Palmiter R. D., Behringer R. R., Quaife C. J., Maxwell F., Maxwell I. H., Brinster R. L. Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell. 1987 Jul 31;50(3):435–443. doi: 10.1016/0092-8674(87)90497-1. [DOI] [PubMed] [Google Scholar]
  22. Schreiber G., Fersht A. R. Energetics of protein-protein interactions: analysis of the barnase-barstar interface by single mutations and double mutant cycles. J Mol Biol. 1995 Apr 28;248(2):478–486. doi: 10.1016/s0022-2836(95)80064-6. [DOI] [PubMed] [Google Scholar]
  23. Sentry J. W., Yang M. M., Kaiser K. Conditional cell ablation in Drosophila. Bioessays. 1993 Jul;15(7):491–493. doi: 10.1002/bies.950150710. [DOI] [PubMed] [Google Scholar]
  24. Thorsness M. K., Kandasamy M. K., Nasrallah M. E., Nasrallah J. B. A Brassica S-locus gene promoter targets toxic gene expression and cell death to the pistil and pollen of transgenic Nicotiana. Dev Biol. 1991 Jan;143(1):173–184. doi: 10.1016/0012-1606(91)90064-a. [DOI] [PubMed] [Google Scholar]
  25. Thorsness M. K., Kandasamy M. K., Nasrallah M. E., Nasrallah J. B. Genetic Ablation of Floral Cells in Arabidopsis. Plant Cell. 1993 Mar;5(3):253–261. doi: 10.1105/tpc.5.3.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Vodkin L. O., Rhodes P. R., Goldberg R. B. cA lectin gene insertion has the structural features of a transposable element. Cell. 1983 Oct;34(3):1023–1031. doi: 10.1016/0092-8674(83)90560-3. [DOI] [PubMed] [Google Scholar]
  27. Weigel D., Meyerowitz E. M. The ABCs of floral homeotic genes. Cell. 1994 Jul 29;78(2):203–209. doi: 10.1016/0092-8674(94)90291-7. [DOI] [PubMed] [Google Scholar]
  28. Yadegari R., Paiva GRd., Laux T., Koltunow A. M., Apuya N., Zimmerman J. L., Fischer R. L., Harada J. J., Goldberg R. B. Cell Differentiation and Morphogenesis Are Uncoupled in Arabidopsis raspberry Embryos. Plant Cell. 1994 Dec;6(12):1713–1729. doi: 10.1105/tpc.6.12.1713. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES