Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1997 Sep;9(9):1585–1594. doi: 10.1105/tpc.9.9.1585

The Ustilago maydis regulatory subunit of a cAMP-dependent protein kinase is required for gall formation in maize.

S E Gold 1, S M Brogdon 1, M E Mayorga 1, J W Kronstad 1
PMCID: PMC157035  PMID: 9338961

Abstract

In the plant, filamentous growth is required for pathogenicity of the corn smut pathogen Ustilago maydis. Earlier, we identified a role for the cAMP signal transduction pathway in the switch between budding and filamentous growth for this fungus. A gene designated ubc1 (for Ustilago bypass of cyclase) was found to be required for filamentous growth and to encode the regulatory subunit of a cAMP-dependent protein kinase (PKA). Here, we show that ubc1 is important for the virulence of the pathogen. Specifically, ubc1 mutants are able to colonize maize plants and, like the wild-type pathogen, cause localized symptoms in association with the presence of hyphae. However, in contrast to plants infected with wild-type cells that often developed galls from initially chlorotic tissue, plants infected with the ubc1 mutant did not produce galls. These data suggest that PKA regulation is critical for the transition from saprophytic to pathogenic growth and from vegetative to reproductive development. Plate mating assays in which exogenous cAMP was applied suggested that the cAMP and b mating-type morphogenetic pathways may be coordinated.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banuett F. Genetics of Ustilago maydis, a fungal pathogen that induces tumors in maize. Annu Rev Genet. 1995;29:179–208. doi: 10.1146/annurev.ge.29.120195.001143. [DOI] [PubMed] [Google Scholar]
  2. Banuett F. Identification of genes governing filamentous growth and tumor induction by the plant pathogen Ustilago maydis. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3922–3926. doi: 10.1073/pnas.88.9.3922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barrett K. J., Gold S. E., Kronstad J. W. Identification and complementation of a mutation to constitutive filamentous growth in Ustilago maydis. Mol Plant Microbe Interact. 1993 May-Jun;6(3):274–283. doi: 10.1094/mpmi-6-274. [DOI] [PubMed] [Google Scholar]
  4. Beckerman J. L., Ebbole D. J. MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition. Mol Plant Microbe Interact. 1996 Aug;9(6):450–456. doi: 10.1094/mpmi-9-0450. [DOI] [PubMed] [Google Scholar]
  5. Brunton A. H., Gadd G. M. The effect of exogenously-supplied nucleosides and nucleotides and the involvement of adenosine 3':5'-cyclic monophosphate (cyclic AMP) in the yeast mycelium transition of Ceratocystis (= Ophiostoma) ulmi. FEMS Microbiol Lett. 1989 Jul 1;51(1):49–53. doi: 10.1016/0378-1097(89)90076-1. [DOI] [PubMed] [Google Scholar]
  6. Bölker M., Urban M., Kahmann R. The a mating type locus of U. maydis specifies cell signaling components. Cell. 1992 Feb 7;68(3):441–450. doi: 10.1016/0092-8674(92)90182-c. [DOI] [PubMed] [Google Scholar]
  7. Choi G. H., Chen B., Nuss D. L. Virus-mediated or transgenic suppression of a G-protein alpha subunit and attenuation of fungal virulence. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):305–309. doi: 10.1073/pnas.92.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Freeman S., Rodriguez R. J. Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist. Science. 1993 Apr 2;260(5104):75–78. doi: 10.1126/science.260.5104.75. [DOI] [PubMed] [Google Scholar]
  9. Froeliger E. H., Leong S. A. The a mating-type alleles of Ustilago maydis are idiomorphs. Gene. 1991 Apr;100:113–122. doi: 10.1016/0378-1119(91)90356-g. [DOI] [PubMed] [Google Scholar]
  10. Giasson L., Kronstad J. W. Mutations in the myp1 gene of Ustilago maydis attenuate mycelial growth and virulence. Genetics. 1995 Oct;141(2):491–501. doi: 10.1093/genetics/141.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gillissen B., Bergemann J., Sandmann C., Schroeer B., Bölker M., Kahmann R. A two-component regulatory system for self/non-self recognition in Ustilago maydis. Cell. 1992 Feb 21;68(4):647–657. doi: 10.1016/0092-8674(92)90141-x. [DOI] [PubMed] [Google Scholar]
  12. Gold S. E., Kronstad J. W. Disruption of two genes for chitin synthase in the phytopathogenic fungus Ustilago maydis. Mol Microbiol. 1994 Mar;11(5):897–902. doi: 10.1111/j.1365-2958.1994.tb00368.x. [DOI] [PubMed] [Google Scholar]
  13. Gold S., Duncan G., Barrett K., Kronstad J. cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. Genes Dev. 1994 Dec 1;8(23):2805–2816. doi: 10.1101/gad.8.23.2805. [DOI] [PubMed] [Google Scholar]
  14. Hartmann H. A., Kahmann R., Bölker M. The pheromone response factor coordinates filamentous growth and pathogenicity in Ustilago maydis. EMBO J. 1996 Apr 1;15(7):1632–1641. [PMC free article] [PubMed] [Google Scholar]
  15. Kahmann R., Romeis T., Bölker M., Kämper J. Control of mating and development in Ustilago maydis. Curr Opin Genet Dev. 1995 Oct;5(5):559–564. doi: 10.1016/0959-437x(95)80023-9. [DOI] [PubMed] [Google Scholar]
  16. Kronstad J. W., Leong S. A. The b mating-type locus of Ustilago maydis contains variable and constant regions. Genes Dev. 1990 Aug;4(8):1384–1395. doi: 10.1101/gad.4.8.1384. [DOI] [PubMed] [Google Scholar]
  17. Lee Y. H., Dean R. A. cAMP Regulates Infection Structure Formation in the Plant Pathogenic Fungus Magnaporthe grisea. Plant Cell. 1993 Jun;5(6):693–700. doi: 10.1105/tpc.5.6.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Regenfelder E., Spellig T., Hartmann A., Lauenstein S., Bölker M., Kahmann R. G proteins in Ustilago maydis: transmission of multiple signals? EMBO J. 1997 Apr 15;16(8):1934–1942. doi: 10.1093/emboj/16.8.1934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schulz B., Banuett F., Dahl M., Schlesinger R., Schäfer W., Martin T., Herskowitz I., Kahmann R. The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell. 1990 Jan 26;60(2):295–306. doi: 10.1016/0092-8674(90)90744-y. [DOI] [PubMed] [Google Scholar]
  20. Spellig T., Bölker M., Lottspeich F., Frank R. W., Kahmann R. Pheromones trigger filamentous growth in Ustilago maydis. EMBO J. 1994 Apr 1;13(7):1620–1627. doi: 10.1002/j.1460-2075.1994.tb06425.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Taylor S. S., Buechler J. A., Yonemoto W. cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu Rev Biochem. 1990;59:971–1005. doi: 10.1146/annurev.bi.59.070190.004543. [DOI] [PubMed] [Google Scholar]
  22. Trueheart J., Herskowitz I. The a locus governs cytoduction in Ustilago maydis. J Bacteriol. 1992 Dec;174(23):7831–7833. doi: 10.1128/jb.174.23.7831-7833.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Urban M., Kahmann R., Bölker M. Identification of the pheromone response element in Ustilago maydis. Mol Gen Genet. 1996 Apr 24;251(1):31–37. doi: 10.1007/BF02174341. [DOI] [PubMed] [Google Scholar]
  24. Yee A. R., Kronstad J. W. Construction of chimeric alleles with altered specificity at the b incompatibility locus of Ustilago maydis. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):664–668. doi: 10.1073/pnas.90.2.664. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES