Abstract
Mature Brassica oleracea pollen grains are covered with a lipophilic pollen coat containing a variety of proteins. Screening of an anther cDNA expression library for the coding sequences of such proteins resulted in the isolation of a number of cDNA clones encoding glycine-rich oleosins. The proteins were shown to be attached to the lipophilic coat material only and to be absent elsewhere in the plant. Within the coat, several forms of the pollen coat oleosin with different molecular weights were detected. The forms are encoded by different transcripts that originate from a single gene. Expression of this gene is restricted to the tapetum and is quantitatively regulated by the water content of the anther. Similar oleosins were found in the pollen coat of B. alboglobra and B. napus.
Full Text
The Full Text of this article is available as a PDF (2.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bray E. A. Molecular Responses to Water Deficit. Plant Physiol. 1993 Dec;103(4):1035–1040. doi: 10.1104/pp.103.4.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dickinson H. G. The role of plastids in the formation of pollen grain coatings. Cytobios. 1973 Sep-Oct;8(29):25–40. [PubMed] [Google Scholar]
- Doughty J., Hedderson F., McCubbin A., Dickinson H. Interaction between a coating-borne peptide of the Brassica pollen grain and stigmatic S (self-incompatibility)-locus-specific glycoproteins. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):467–471. doi: 10.1073/pnas.90.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elleman C. J., Dickinson H. G. Pollen-stigma interactions in Brassica. IV. Structural reorganization in the pollen grains during hydration. J Cell Sci. 1986 Feb;80:141–157. doi: 10.1242/jcs.80.1.141. [DOI] [PubMed] [Google Scholar]
- Holbrook L. A., van Rooijen G. J., Wilen R. W., Moloney M. M. Oilbody Proteins in Microspore-Derived Embryos of Brassica napus: Hormonal, Osmotic, and Developmental Regulation of Synthesis. Plant Physiol. 1991 Nov;97(3):1051–1058. doi: 10.1104/pp.97.3.1051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hülskamp M., Kopczak S. D., Horejsi T. F., Kihl B. K., Pruitt R. E. Identification of genes required for pollen-stigma recognition in Arabidopsis thaliana. Plant J. 1995 Nov;8(5):703–714. doi: 10.1046/j.1365-313x.1995.08050703.x. [DOI] [PubMed] [Google Scholar]
- Keddie J. S., Edwards E. W., Gibbons T., Shaw C. H., Murphy D. J. Sequence of an oleosin cDNA from Brassica napus. Plant Mol Biol. 1992 Sep;19(6):1079–1083. doi: 10.1007/BF00040541. [DOI] [PubMed] [Google Scholar]
- Keddie J. S., Hübner G., Slocombe S. P., Jarvis R. P., Cummins I., Edwards E. W., Shaw C. H., Murphy D. J. Cloning and characterisation of an oleosin gene from Brassica napus. Plant Mol Biol. 1992 Jun;19(3):443–453. doi: 10.1007/BF00023392. [DOI] [PubMed] [Google Scholar]
- Lee W. S., Tzen J. T., Kridl J. C., Radke S. E., Huang A. H. Maize oleosin is correctly targeted to seed oil bodies in Brassica napus transformed with the maize oleosin gene. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6181–6185. doi: 10.1073/pnas.88.14.6181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mount S. M. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. doi: 10.1093/nar/10.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy D. J. Structure, function and biogenesis of storage lipid bodies and oleosins in plants. Prog Lipid Res. 1993;32(3):247–280. doi: 10.1016/0163-7827(93)90009-l. [DOI] [PubMed] [Google Scholar]
- Park Y. S., Song O. K., Hong S. W., Kwak J. M., Cho M. J., Nam H. G. Frequent in-frame length variations are found in the diverged simple repeat sequences of the protein-coding regions of two putative protein kinase genes of Brassica napus. Plant Mol Biol. 1995 Feb;27(4):829–833. doi: 10.1007/BF00020237. [DOI] [PubMed] [Google Scholar]
- Preuss D. Being fruitful: genetics of reproduction in Arabidopsis. Trends Genet. 1995 Apr;11(4):147–153. doi: 10.1016/s0168-9525(00)89029-0. [DOI] [PubMed] [Google Scholar]
- Preuss D., Lemieux B., Yen G., Davis R. W. A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes Dev. 1993 Jun;7(6):974–985. doi: 10.1101/gad.7.6.974. [DOI] [PubMed] [Google Scholar]
- Robert L. S., Gerster J., Allard S., Cass L., Simmonds J. Molecular characterization of two Brassica napus genes related to oleosins which are highly expressed in the tapetum. Plant J. 1994 Dec;6(6):927–933. doi: 10.1046/j.1365-313x.1994.6060927.x. [DOI] [PubMed] [Google Scholar]
- Roberts M. R., Hodge R., Scott R. Brassica napus pollen oleosins possess a characteristic C-terminal domain. Planta. 1995;195(3):469–470. doi: 10.1007/BF00202607. [DOI] [PubMed] [Google Scholar]
- Ross J. H., Murphy D. J. Characterization of anther-expressed genes encoding a major class of extracellular oleosin-like proteins in the pollen coat of Brassicaceae. Plant J. 1996 May;9(5):625–637. doi: 10.1046/j.1365-313x.1996.9050625.x. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt J. S., Lindstrom J. T., Vodkin L. O. Genetic length polymorphisms create size variation in proline-rich proteins of the cell wall. Plant J. 1994 Aug;6(2):177–186. doi: 10.1046/j.1365-313x.1994.6020177.x. [DOI] [PubMed] [Google Scholar]
- Stead A. D., Roberts I. N., Dickinson H. G. Pollen-stigma interaction in Brassica oleracea: the role of stigmatic proteins in pollen grain adhesion. J Cell Sci. 1980 Apr;42:417–423. doi: 10.1242/jcs.42.1.417. [DOI] [PubMed] [Google Scholar]
- Tautz D., Trick M., Dover G. A. Cryptic simplicity in DNA is a major source of genetic variation. Nature. 1986 Aug 14;322(6080):652–656. doi: 10.1038/322652a0. [DOI] [PubMed] [Google Scholar]
- Woodward J. R., Craik D., Dell A., Khoo K. H., Munro S. L., Clarke A. E., Bacic A. Structural analysis of the N-linked glycan chains from a stylar glycoprotein associated with expression of self-incompatibility in Nicotiana alata. Glycobiology. 1992 Jun;2(3):241–250. doi: 10.1093/glycob/2.3.241. [DOI] [PubMed] [Google Scholar]
- de Oliveira D. E., Franco L. O., Simoens C., Seurinck J., Coppieters J., Botterman J., Van Montagu M. Inflorescence-specific genes from Arabidopsis thaliana encoding glycine-rich proteins. Plant J. 1993 Apr;3(4):495–507. doi: 10.1046/j.1365-313x.1993.03040495.x. [DOI] [PubMed] [Google Scholar]
- van Rooijen G. J., Moloney M. M. Structural requirements of oleosin domains for subcellular targeting to the oil body. Plant Physiol. 1995 Dec;109(4):1353–1361. doi: 10.1104/pp.109.4.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Rooijen G. J., Terning L. I., Moloney M. M. Nucleotide sequence of an Arabidopsis thaliana oleosin gene. Plant Mol Biol. 1992 Apr;18(6):1177–1179. doi: 10.1007/BF00047721. [DOI] [PubMed] [Google Scholar]
