Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1997 Sep;9(9):1633–1646. doi: 10.1105/tpc.9.9.1633

Recombination occurs uniformly within the bronze gene, a meiotic recombination hotspot in the maize genome.

H K Dooner 1, I M Martínez-Férez 1
PMCID: PMC157039  PMID: 9338965

Abstract

The bronze (bz) gene is a recombinational hotspot in the maize genome: its level of meiotic recombination per unit of physical length is > 100-fold higher than the genome's average and is the highest of any plant gene analyzed to date. Here, we examine whether recombination is also unevenly distributed within the bz gene. In yeast genes, recombination (conversion) is polarized, being higher at the end of the gene where recombination is presumably initiated. We have analyzed products of meiotic recombination between heteroallelic pairs of bz mutations in both the presence and absence of heterologies and have sequenced the recombination junction in 130 such Bz intragenic recombinants. We have found that in the absence of heterologies, recombination is proportional to physical distance across the bz gene. The simplest interpretation for this lack of polarity is that recombination is initiated randomly within the gene. Insertion mutations affect the frequency and distribution of intragenic recombination events at bz, creating hotspots and coldspots. Single base pair heterologies also affect recombination, with fewer recombination events than expected by chance occurring in regions of the bz gene with a high density of heterologies. We also provide evidence that meiotic recombination in maize is conservative, that is, it does not introduce changes, and that meiotic conversion tracts are continuous and similar in size to those in yeast.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antequera F., Bird A. P. Unmethylated CpG islands associated with genes in higher plant DNA. EMBO J. 1988 Aug;7(8):2295–2299. doi: 10.1002/j.1460-2075.1988.tb03072.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Borts R. H., Haber J. E. Length and distribution of meiotic gene conversion tracts and crossovers in Saccharomyces cerevisiae. Genetics. 1989 Sep;123(1):69–80. doi: 10.1093/genetics/123.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borts R. H., Haber J. E. Meiotic recombination in yeast: alteration by multiple heterozygosities. Science. 1987 Sep 18;237(4821):1459–1465. doi: 10.1126/science.2820060. [DOI] [PubMed] [Google Scholar]
  4. Civardi L., Xia Y., Edwards K. J., Schnable P. S., Nikolau B. J. The relationship between genetic and physical distances in the cloned a1-sh2 interval of the Zea mays L. genome. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8268–8272. doi: 10.1073/pnas.91.17.8268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clark S. H., Hilliker A. J., Chovnick A. Recombination can initiate and terminate at a large number of sites within the rosy locus of Drosophila melanogaster. Genetics. 1988 Feb;118(2):261–266. doi: 10.1093/genetics/118.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Curtis D., Bender W. Gene conversion in Drosophila and the effects of the meiotic mutants mei-9 and mei-218. Genetics. 1991 Apr;127(4):739–746. doi: 10.1093/genetics/127.4.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dooner H. K. Genetic Fine Structure of the BRONZE Locus in Maize. Genetics. 1986 Aug;113(4):1021–1036. doi: 10.1093/genetics/113.4.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dooner H. K., Keller J., Harper E., Ralston E. Variable Patterns of Transposition of the Maize Element Activator in Tobacco. Plant Cell. 1991 May;3(5):473–482. doi: 10.1105/tpc.3.5.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dooner H. K., Kermicle J. L. The Transposable Element Ds Affects the Pattern of Intragenic Recombination at the bz and R Loci in Maize. Genetics. 1986 May;113(1):135–143. doi: 10.1093/genetics/113.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dooner H., English J., Ralston E., Weck E. A single genetic unit specifies two transposition functions in the maize element activator. Science. 1986 Oct 10;234(4773):210–211. doi: 10.1126/science.234.4773.210. [DOI] [PubMed] [Google Scholar]
  11. Eggleston W. B., Alleman M., Kermicle J. L. Molecular organization and germinal instability of R-stippled maize. Genetics. 1995 Sep;141(1):347–360. doi: 10.1093/genetics/141.1.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Greene B., Walko R., Hake S. Mutator insertions in an intron of the maize knotted1 gene result in dominant suppressible mutations. Genetics. 1994 Dec;138(4):1275–1285. doi: 10.1093/genetics/138.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hayden M. S., Byers B. Minimal extent of homology required for completion of meiotic recombination in Saccharomyces cerevisiae. Dev Genet. 1992;13(6):498–514. doi: 10.1002/dvg.1020130611. [DOI] [PubMed] [Google Scholar]
  14. Kim H. Y., Schiefelbein J. W., Raboy V., Furtek D. B., Nelson O. E., Jr RNA splicing permits expression of a maize gene with a defective Suppressor-mutator transposable element insertion in an exon. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5863–5867. doi: 10.1073/pnas.84.16.5863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Leeds P., Peltz S. W., Jacobson A., Culbertson M. R. The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Dev. 1991 Dec;5(12A):2303–2314. doi: 10.1101/gad.5.12a.2303. [DOI] [PubMed] [Google Scholar]
  16. Ludwig S. R., Habera L. F., Dellaporta S. L., Wessler S. R. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7092–7096. doi: 10.1073/pnas.86.18.7092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Malone R. E., Bullard S., Lundquist S., Kim S., Tarkowski T. A meiotic gene conversion gradient opposite to the direction of transcription. Nature. 1992 Sep 10;359(6391):154–155. doi: 10.1038/359154a0. [DOI] [PubMed] [Google Scholar]
  18. Malone R. E., Kim S., Bullard S. A., Lundquist S., Hutchings-Crow L., Cramton S., Lutfiyya L., Lee J. Analysis of a recombination hotspot for gene conversion occurring at the HIS2 gene of Saccharomyces cerevisiae. Genetics. 1994 May;137(1):5–18. doi: 10.1093/genetics/137.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Messing J., Crea R., Seeburg P. H. A system for shotgun DNA sequencing. Nucleic Acids Res. 1981 Jan 24;9(2):309–321. doi: 10.1093/nar/9.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nelson O E. The Waxy Locus in Maize. I. Intralocus Recombination Frequency Estimates by Pollen and by Conventional Analyses. Genetics. 1962 Jun;47(6):737–742. doi: 10.1093/genetics/47.6.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nicolas A., Petes T. D. Polarity of meiotic gene conversion in fungi: contrasting views. Experientia. 1994 Mar 15;50(3):242–252. doi: 10.1007/BF01924007. [DOI] [PubMed] [Google Scholar]
  22. Patterson G. I., Kubo K. M., Shroyer T., Chandler V. L. Sequences required for paramutation of the maize b gene map to a region containing the promoter and upstream sequences. Genetics. 1995 Aug;140(4):1389–1406. doi: 10.1093/genetics/140.4.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pulak R., Anderson P. mRNA surveillance by the Caenorhabditis elegans smg genes. Genes Dev. 1993 Oct;7(10):1885–1897. doi: 10.1101/gad.7.10.1885. [DOI] [PubMed] [Google Scholar]
  24. Radding C. M. Homologous pairing and strand exchange in genetic recombination. Annu Rev Genet. 1982;16:405–437. doi: 10.1146/annurev.ge.16.120182.002201. [DOI] [PubMed] [Google Scholar]
  25. Ralston E. J., English J. J., Dooner H. K. Sequence of three bronze alleles of maize and correlation with the genetic fine structure. Genetics. 1988 May;119(1):185–197. doi: 10.1093/genetics/119.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ralston E., English J., Dooner H. K. Chromosome-breaking structure in maize involving a fractured Ac element. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9451–9455. doi: 10.1073/pnas.86.23.9451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schiefelbein J. W., Furtek D. B., Dooner H. K., Nelson O. E., Jr Two mutations in a maize bronze-1 allele caused by transposable elements of the Ac-Ds family alter the quantity and quality of the gene product. Genetics. 1988 Nov;120(3):767–777. doi: 10.1093/genetics/120.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sun H., Treco D., Szostak J. W. Extensive 3'-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell. 1991 Mar 22;64(6):1155–1161. doi: 10.1016/0092-8674(91)90270-9. [DOI] [PubMed] [Google Scholar]
  29. Symington L. S., Petes T. D. Expansions and contractions of the genetic map relative to the physical map of yeast chromosome III. Mol Cell Biol. 1988 Feb;8(2):595–604. doi: 10.1128/mcb.8.2.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Thuriaux P. Is recombination confined to structural genes on the eukaryotic genome? Nature. 1977 Aug 4;268(5619):460–462. doi: 10.1038/268460a0. [DOI] [PubMed] [Google Scholar]
  31. Waldman A. S., Liskay R. M. Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol Cell Biol. 1988 Dec;8(12):5350–5357. doi: 10.1128/mcb.8.12.5350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Watt V. M., Ingles C. J., Urdea M. S., Rutter W. J. Homology requirements for recombination in Escherichia coli. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4768–4772. doi: 10.1073/pnas.82.14.4768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Xu X., Hsia A. P., Zhang L., Nikolau B. J., Schnable P. S. Meiotic recombination break points resolve at high rates at the 5' end of a maize coding sequence. Plant Cell. 1995 Dec;7(12):2151–2161. doi: 10.1105/tpc.7.12.2151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. van Hoof A., Green P. J. Premature nonsense codons decrease the stability of phytohemagglutinin mRNA in a position-dependent manner. Plant J. 1996 Sep;10(3):415–424. doi: 10.1046/j.1365-313x.1996.10030415.x. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES