Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1997 Sep;9(9):1647–1659. doi: 10.1105/tpc.9.9.1647

Inhibition of Pollen Tube Elongation by Microinjected Anti-Rop1Ps Antibodies Suggests a Crucial Role for Rho-Type GTPases in the Control of Tip Growth.

Y Lin 1, Z Yang 1
PMCID: PMC157040  PMID: 12237397

Abstract

Microinjection of anti-Rop1Ps antibodies was used to assess the function of a tip-localized Rho-type GTPase, Rop, in controlling pollen tube growth. Injected antibodies induced sustained growth arrest within 1 to 2 min after injection but did not affect cytoplasmic streaming. Coinjection with Rop rescued antibody-induced growth inhibition, indicating that injected antibodies specifically block the activity of Rop GTPases. Antibody-induced inhibition was significantly enhanced in the presence of a lower threshold of extracellular [Ca2+] or a subinhibitory dosage of caffeine. In contrast, injection of the C3 toxin, which inactivates a different Rho-type GTPase, arrested tube elongation 10 to 20 min after injection. C3-induced growth arrest was accompanied by the cessation of cytoplasmic streaming. These data suggest that Rho-type GTPases play a pivotal role in the control of pollen tube elongation. We propose that Rop may regulate a Ca2+-dependent pathway involved in vesicle docking/fusion, whereas a C3-sensitive Rho GTPase may mediate cytoplasmic streaming.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aktories K., Braun U., Rösener S., Just I., Hall A. The rho gene product expressed in E. coli is a substrate of botulinum ADP-ribosyltransferase C3. Biochem Biophys Res Commun. 1989 Jan 16;158(1):209–213. doi: 10.1016/s0006-291x(89)80199-8. [DOI] [PubMed] [Google Scholar]
  2. Battey N. H., James N. C., Greenland A. J. cDNA isolation and gene expression of the maize annexins p33 and p35. Plant Physiol. 1996 Nov;112(3):1391–1396. doi: 10.1104/pp.112.3.1391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bender A., Pringle J. R. Multicopy suppression of the cdc24 budding defect in yeast by CDC42 and three newly identified genes including the ras-related gene RSR1. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9976–9980. doi: 10.1073/pnas.86.24.9976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blackbourn H. D., Barker P. J., Huskisson N. S., Battey N. H. Properties and partial protein sequence of plant annexins. Plant Physiol. 1992 Jul;99(3):864–871. doi: 10.1104/pp.99.3.864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bowler C., Neuhaus G., Yamagata H., Chua N. H. Cyclic GMP and calcium mediate phytochrome phototransduction. Cell. 1994 Apr 8;77(1):73–81. doi: 10.1016/0092-8674(94)90236-4. [DOI] [PubMed] [Google Scholar]
  6. Chardin P., Boquet P., Madaule P., Popoff M. R., Rubin E. J., Gill D. M. The mammalian G protein rhoC is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilaments in Vero cells. EMBO J. 1989 Apr;8(4):1087–1092. doi: 10.1002/j.1460-2075.1989.tb03477.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chasserot-Golaz S., Vitale N., Sagot I., Delouche B., Dirrig S., Pradel L. A., Henry J. P., Aunis D., Bader M. F. Annexin II in exocytosis: catecholamine secretion requires the translocation of p36 to the subplasmalemmal region in chromaffin cells. J Cell Biol. 1996 Jun;133(6):1217–1236. doi: 10.1083/jcb.133.6.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cheung A. Y., Wang H., Wu H. M. A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell. 1995 Aug 11;82(3):383–393. doi: 10.1016/0092-8674(95)90427-1. [DOI] [PubMed] [Google Scholar]
  9. Delmer D. P., Pear J. R., Andrawis A., Stalker D. M. Genes encoding small GTP-binding proteins analogous to mammalian rac are preferentially expressed in developing cotton fibers. Mol Gen Genet. 1995 Jul 22;248(1):43–51. doi: 10.1007/BF02456612. [DOI] [PubMed] [Google Scholar]
  10. Grönroos E., Andersson T., Schippert A., Zheng L., Sjölander A. Leukotriene D4-induced mobilization of intracellular Ca2+ in epithelial cells is critically dependent on activation of the small GTP-binding protein Rho. Biochem J. 1996 May 15;316(Pt 1):239–245. doi: 10.1042/bj3160239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Guan K. L., Dixon J. E. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal Biochem. 1991 Feb 1;192(2):262–267. doi: 10.1016/0003-2697(91)90534-z. [DOI] [PubMed] [Google Scholar]
  12. Hirata K., Kikuchi A., Sasaki T., Kuroda S., Kaibuchi K., Matsuura Y., Seki H., Saida K., Takai Y. Involvement of rho p21 in the GTP-enhanced calcium ion sensitivity of smooth muscle contraction. J Biol Chem. 1992 May 5;267(13):8719–8722. [PubMed] [Google Scholar]
  13. Hulskamp M., Schneitz K., Pruitt R. E. Genetic Evidence for a Long-Range Activity That Directs Pollen Tube Guidance in Arabidopsis. Plant Cell. 1995 Jan;7(1):57–64. doi: 10.1105/tpc.7.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lamaze C., Chuang T. H., Terlecky L. J., Bokoch G. M., Schmid S. L. Regulation of receptor-mediated endocytosis by Rho and Rac. Nature. 1996 Jul 11;382(6587):177–179. doi: 10.1038/382177a0. [DOI] [PubMed] [Google Scholar]
  15. Larochelle D. A., Vithalani K. K., De Lozanne A. A novel member of the rho family of small GTP-binding proteins is specifically required for cytokinesis. J Cell Biol. 1996 Jun;133(6):1321–1329. doi: 10.1083/jcb.133.6.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lin Y., Wang Y., Zhu J. K., Yang Z. Localization of a Rho GTPase Implies a Role in Tip Growth and Movement of the Generative Cell in Pollen Tubes. Plant Cell. 1996 Feb;8(2):293–303. doi: 10.1105/tpc.8.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Malho R., Read N. D., Trewavas A. J., Pais M. S. Calcium Channel Activity during Pollen Tube Growth and Reorientation. Plant Cell. 1995 Aug;7(8):1173–1184. doi: 10.1105/tpc.7.8.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Malho R., Trewavas A. J. Localized Apical Increases of Cytosolic Free Calcium Control Pollen Tube Orientation. Plant Cell. 1996 Nov;8(11):1935–1949. doi: 10.1105/tpc.8.11.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mariot P., O'Sullivan A. J., Brown A. M., Tatham P. E. Rho guanine nucleotide dissociation inhibitor protein (RhoGDI) inhibits exocytosis in mast cells. EMBO J. 1996 Dec 2;15(23):6476–6482. [PMC free article] [PubMed] [Google Scholar]
  20. Mascarenhas J. P. Molecular Mechanisms of Pollen Tube Growth and Differentiation. Plant Cell. 1993 Oct;5(10):1303–1314. doi: 10.1105/tpc.5.10.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miyamoto S., Ohya Y., Ohsumi Y., Anraku Y. Nucleotide sequence of the CLS4 (CDC24) gene of Saccharomyces cerevisiae. Gene. 1987;54(1):125–132. doi: 10.1016/0378-1119(87)90354-4. [DOI] [PubMed] [Google Scholar]
  22. Murphy C., Saffrich R., Grummt M., Gournier H., Rybin V., Rubino M., Auvinen P., Lütcke A., Parton R. G., Zerial M. Endosome dynamics regulated by a Rho protein. Nature. 1996 Dec 5;384(6608):427–432. doi: 10.1038/384427a0. [DOI] [PubMed] [Google Scholar]
  23. Nasrallah J. B., Stein J. C., Kandasamy M. K., Nasrallah M. E. Signaling the arrest of pollen tube development in self-incompatible plants. Science. 1994 Dec 2;266(5190):1505–1508. doi: 10.1126/science.266.5190.1505. [DOI] [PubMed] [Google Scholar]
  24. Neuhaus G., Bowler C., Kern R., Chua N. H. Calcium/calmodulin-dependent and -independent phytochrome signal transduction pathways. Cell. 1993 Jun 4;73(5):937–952. doi: 10.1016/0092-8674(93)90272-r. [DOI] [PubMed] [Google Scholar]
  25. Nobes C., Hall A. Regulation and function of the Rho subfamily of small GTPases. Curr Opin Genet Dev. 1994 Feb;4(1):77–81. doi: 10.1016/0959-437x(94)90094-9. [DOI] [PubMed] [Google Scholar]
  26. Peppelenbosch M. P., Tertoolen L. G., de Vries-Smits A. M., Qiu R. G., M'Rabet L., Symons M. H., de Laat S. W., Bos J. L. Rac-dependent and -independent pathways mediate growth factor-induced Ca2+ influx. J Biol Chem. 1996 Apr 5;271(14):7883–7886. doi: 10.1074/jbc.271.14.7883. [DOI] [PubMed] [Google Scholar]
  27. Pierson E. S., Miller D. D., Callaham D. A., Shipley A. M., Rivers B. A., Cresti M., Hepler P. K. Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. Plant Cell. 1994 Dec;6(12):1815–1828. doi: 10.1105/tpc.6.12.1815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pierson E. S., Miller D. D., Callaham D. A., van Aken J., Hackett G., Hepler P. K. Tip-localized calcium entry fluctuates during pollen tube growth. Dev Biol. 1996 Feb 25;174(1):160–173. doi: 10.1006/dbio.1996.0060. [DOI] [PubMed] [Google Scholar]
  29. Raynal P., Pollard H. B. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta. 1994 Apr 5;1197(1):63–93. doi: 10.1016/0304-4157(94)90019-1. [DOI] [PubMed] [Google Scholar]
  30. Ridley A. J., Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992 Aug 7;70(3):389–399. doi: 10.1016/0092-8674(92)90163-7. [DOI] [PubMed] [Google Scholar]
  31. Ridley A. J., Paterson H. F., Johnston C. L., Diekmann D., Hall A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell. 1992 Aug 7;70(3):401–410. doi: 10.1016/0092-8674(92)90164-8. [DOI] [PubMed] [Google Scholar]
  32. Ridley A. J. Rho: theme and variations. Curr Biol. 1996 Oct 1;6(10):1256–1264. doi: 10.1016/s0960-9822(02)70711-2. [DOI] [PubMed] [Google Scholar]
  33. Staiger C. J., Yuan M., Valenta R., Shaw P. J., Warn R. M., Lloyd C. W. Microinjected profilin affects cytoplasmic streaming in plant cells by rapidly depolymerizing actin microfilaments. Curr Biol. 1994 Mar 1;4(3):215–219. doi: 10.1016/s0960-9822(00)00050-6. [DOI] [PubMed] [Google Scholar]
  34. Sugai M., Hashimoto K., Kikuchi A., Inoue S., Okumura H., Matsumoto K., Goto Y., Ohgai H., Moriishi K., Syuto B. Epidermal cell differentiation inhibitor ADP-ribosylates small GTP-binding proteins and induces hyperplasia of epidermis. J Biol Chem. 1992 Feb 5;267(4):2600–2604. [PubMed] [Google Scholar]
  35. Takaishi K., Kikuchi A., Kuroda S., Kotani K., Sasaki T., Takai Y. Involvement of rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI) in cell motility. Mol Cell Biol. 1993 Jan;13(1):72–79. doi: 10.1128/mcb.13.1.72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vojtek A. B., Cooper J. A. Rho family members: activators of MAP kinase cascades. Cell. 1995 Aug 25;82(4):527–529. doi: 10.1016/0092-8674(95)90023-3. [DOI] [PubMed] [Google Scholar]
  37. Wilhelmi L. K., Preuss D. Self-sterility in Arabidopsis due to defective pollen tube guidance. Science. 1996 Nov 29;274(5292):1535–1537. doi: 10.1126/science.274.5292.1535. [DOI] [PubMed] [Google Scholar]
  38. Wolniak S. M., Larsen P. M. The timing of protein kinase activation events in the cascade that regulates mitotic progression in Tradescantia stamen hair cells. Plant Cell. 1995 Apr;7(4):431–445. doi: 10.1105/tpc.7.4.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yamochi W., Tanaka K., Nonaka H., Maeda A., Musha T., Takai Y. Growth site localization of Rho1 small GTP-binding protein and its involvement in bud formation in Saccharomyces cerevisiae. J Cell Biol. 1994 Jun;125(5):1077–1093. doi: 10.1083/jcb.125.5.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yang Z., Watson J. C. Molecular cloning and characterization of rho, a ras-related small GTP-binding protein from the garden pea. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8732–8736. doi: 10.1073/pnas.90.18.8732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ziman M., O'Brien J. M., Ouellette L. A., Church W. R., Johnson D. I. Mutational analysis of CDC42Sc, a Saccharomyces cerevisiae gene that encodes a putative GTP-binding protein involved in the control of cell polarity. Mol Cell Biol. 1991 Jul;11(7):3537–3544. doi: 10.1128/mcb.11.7.3537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Ziman M., Preuss D., Mulholland J., O'Brien J. M., Botstein D., Johnson D. I. Subcellular localization of Cdc42p, a Saccharomyces cerevisiae GTP-binding protein involved in the control of cell polarity. Mol Biol Cell. 1993 Dec;4(12):1307–1316. doi: 10.1091/mbc.4.12.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES