Abstract
The Arabidopsis DEETIOLATED2 (DET2) gene has been cloned and shown to encode a protein that shares significant sequence identity with mammalian steroid 5 alpha-reductases. Loss of DET2 function causes many defects in Arabidopsis development that can be rescued by the application of brassinolide; therefore, we propose that DET2 encodes a reductase that acts at the first step of the proposed biosynthetic pathway--in the conversion of campesterol to campestanol. Here, we used biochemical measurements and biological assays to determine the precise biochemical defect in det2 mutants. We show that DET2 actually acts at the second step in brassinolide biosynthesis in the 5 alpha-reduction of (24R)-24-methylcholest-4-en-3-one, which is further modified to form campestanol. In feeding experiments using 2H6-labeled campesterol, no significant level of 2H6-labeled campestanol was detected in det2, whereas the wild type accumulated substantial levels. Using gas chromatography-selected ion monitoring analysis, we show that several presumed null alleles of det2 accumulated only 8 to 15% of the wild-type levels of campestanol. Moreover, in det2 mutants, the endogenous levels of (24R)-24-methylcholest-4-en-3-one increased by threefold, whereas the levels of all other measured brassinosteroids accumulated to < 10% of wild-type levels. Exogenously applied biosynthetic intermediates of brassinolide were found to rescue both the dark- and light-grown defects of det2 mutants. Together, these results refine the original proposed pathway for brassinolide and indicate that mutations in DET2 block the second step in brassinosteroid biosynthesis. These results reinforce the utility of combining genetic and biochemical analyses to studies of biosynthetic pathways and strengthen the argument that brassinosteroids play an essential role in Arabidopsis development.
Full Text
The Full Text of this article is available as a PDF (2.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Castle L. A., Meinke D. W. A FUSCA gene of Arabidopsis encodes a novel protein essential for plant development. Plant Cell. 1994 Jan;6(1):25–41. doi: 10.1105/tpc.6.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chory J., Nagpal P., Peto C. A. Phenotypic and Genetic Analysis of det2, a New Mutant That Affects Light-Regulated Seedling Development in Arabidopsis. Plant Cell. 1991 May;3(5):445–459. doi: 10.1105/tpc.3.5.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chory J., Peto C., Feinbaum R., Pratt L., Ausubel F. Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell. 1989 Sep 8;58(5):991–999. doi: 10.1016/0092-8674(89)90950-1. [DOI] [PubMed] [Google Scholar]
- Chory J., Reinecke D., Sim S., Washburn T., Brenner M. A Role for Cytokinins in De-Etiolation in Arabidopsis (det Mutants Have an Altered Response to Cytokinins). Plant Physiol. 1994 Feb;104(2):339–347. doi: 10.1104/pp.104.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clouse S. D. Molecular genetic studies confirm the role of brassinosteroids in plant growth and development. Plant J. 1996 Jul;10(1):1–8. doi: 10.1046/j.1365-313x.1996.10010001.x. [DOI] [PubMed] [Google Scholar]
- Deng X. W. Fresh view of light signal transduction in plants. Cell. 1994 Feb 11;76(3):423–426. doi: 10.1016/0092-8674(94)90107-4. [DOI] [PubMed] [Google Scholar]
- Fujioka S., Choi Y. H., Takatsuto S., Yokota T., Li J., Chory J., Sakurai A. Identification of castasterone, 6-deoxocastasterone, typhasterol and 6-deoxotyphasterol from the shoots of Arabidopsis thaliana. Plant Cell Physiol. 1996 Dec;37(8):1201–1203. doi: 10.1093/oxfordjournals.pcp.a029074. [DOI] [PubMed] [Google Scholar]
- Fujioka S., Sakurai A. Brassinosteroids. Nat Prod Rep. 1997 Feb;14(1):1–10. doi: 10.1039/np9971400001. [DOI] [PubMed] [Google Scholar]
- Hsia S. L., Voigt W. Inhibition of dihydrotestosterone formation: an effective means of blocking androgen action in hamster sebaceous gland. J Invest Dermatol. 1974 Mar;62(3):224–227. doi: 10.1111/1523-1747.ep12676791. [DOI] [PubMed] [Google Scholar]
- Kyoku I., Yokota M., Kitano M., Mizuhara H., Sakamoto K., Uesaka T., Hasegawa S., Park S., Muraoka R. [Successful treatment by using a pedicled omental flap for mediastinal infection in the presence of a external valved conduit]. Nihon Geka Hokan. 1990 Mar 1;59(2):168–172. [PubMed] [Google Scholar]
- Lachance Y., Luu-The V., Labrie C., Simard J., Dumont M., de Launoit Y., Guérin S., Leblanc G., Labrie F. Characterization of human 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4-isomerase gene and its expression in mammalian cells. J Biol Chem. 1990 Nov 25;265(33):20469–20475. [PubMed] [Google Scholar]
- Last R. L. The genetics of nitrogen assimilation and amino acid biosynthesis in flowering plants: progress and prospects. Int Rev Cytol. 1993;143:297–330. doi: 10.1016/s0074-7696(08)61878-1. [DOI] [PubMed] [Google Scholar]
- Li J., Biswas M. G., Chao A., Russell D. W., Chory J. Conservation of function between mammalian and plant steroid 5alpha-reductases. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3554–3559. doi: 10.1073/pnas.94.8.3554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li J., Nagpal P., Vitart V., McMorris T. C., Chory J. A role for brassinosteroids in light-dependent development of Arabidopsis. Science. 1996 Apr 19;272(5260):398–401. doi: 10.1126/science.272.5260.398. [DOI] [PubMed] [Google Scholar]
- Miséra S., Müller A. J., Weiland-Heidecker U., Jürgens G. The FUSCA genes of Arabidopsis: negative regulators of light responses. Mol Gen Genet. 1994 Aug 2;244(3):242–252. doi: 10.1007/BF00285451. [DOI] [PubMed] [Google Scholar]
- Nomura T., Nakayama M., Reid J. B., Takeuchi Y., Yokota T. Blockage of Brassinosteroid Biosynthesis and Sensitivity Causes Dwarfism in Garden Pea. Plant Physiol. 1997 Jan;113(1):31–37. doi: 10.1104/pp.113.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Russell D. W., Wilson J. D. Steroid 5 alpha-reductase: two genes/two enzymes. Annu Rev Biochem. 1994;63:25–61. doi: 10.1146/annurev.bi.63.070194.000325. [DOI] [PubMed] [Google Scholar]
- Sakurai A., Fujioka S. Studies on biosynthesis of brassinosteroids. Biosci Biotechnol Biochem. 1997 May;61(5):757–762. doi: 10.1271/bbb.61.757. [DOI] [PubMed] [Google Scholar]
- Szekeres M., Németh K., Koncz-Kálmán Z., Mathur J., Kauschmann A., Altmann T., Rédei G. P., Nagy F., Schell J., Koncz C. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell. 1996 Apr 19;85(2):171–182. doi: 10.1016/s0092-8674(00)81094-6. [DOI] [PubMed] [Google Scholar]
- Takahashi T., Gasch A., Nishizawa N., Chua N. H. The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation. Genes Dev. 1995 Jan 1;9(1):97–107. doi: 10.1101/gad.9.1.97. [DOI] [PubMed] [Google Scholar]
- Wilkinson J. Q., Crawford N. M. Identification and characterization of a chlorate-resistant mutant of Arabidopsis thaliana with mutations in both nitrate reductase structural genes NIA1 and NIA2. Mol Gen Genet. 1993 May;239(1-2):289–297. doi: 10.1007/BF00281630. [DOI] [PubMed] [Google Scholar]
- Wu K., Li L., Gage D. A., Zeevaart J. A. Molecular cloning and photoperiod-regulated expression of gibberellin 20-oxidase from the long-day plant spinach. Plant Physiol. 1996 Feb;110(2):547–554. doi: 10.1104/pp.110.2.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu Y. L., Li L., Wu K., Peeters A. J., Gage D. A., Zeevaart J. A. The GA5 locus of Arabidopsis thaliana encodes a multifunctional gibberellin 20-oxidase: molecular cloning and functional expression. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6640–6644. doi: 10.1073/pnas.92.14.6640. [DOI] [PMC free article] [PubMed] [Google Scholar]