Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1997 Nov;9(11):1985–1998. doi: 10.1105/tpc.9.11.1985

Antisense suppression of 4-coumarate:coenzyme A ligase activity in Arabidopsis leads to altered lignin subunit composition.

D Lee 1, K Meyer 1, C Chapple 1, C J Douglas 1
PMCID: PMC157052  PMID: 9401123

Abstract

The phenylpropanoid enzyme 4-coumarate:coenzyme A ligase (4CL) is considered necessary to activate the hydroxycinnamic acids for the biosynthesis of the coniferyl and sinapyl alcohols subsequently polymerized into lignin. To clarify the role played by 4CL in the biosynthesis of the guaiacyl (G) and syringyl (S) units characteristic of angiosperm lignin, we generated 4CL antisense Arabidopsis lines having as low as 8% residual 4CL activity. The plants had decreases in thioglycolic acid-extractable lignin correlating with decreases in 4CL activity. Nitrobenzene oxidation of cell walls from bolting stems revealed a significant decrease in G units in 4CL-suppressed plants; however, levels of S lignin units were unchanged in even the most severely 4CL-suppressed plants. These effects led to a large decrease in the G/S ratio in these plants. Our results suggest that an uncharacterized metabolic route to sinapyl alcohol, which is independent of 4CL, may exist in Arabidopsis. They also demonstrate that repression of 4CL activity may provide an avenue to manipulate angiosperm lignin subunit composition in a predictable manner.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bate N. J., Orr J., Ni W., Meromi A., Nadler-Hassar T., Doerner P. W., Dixon R. A., Lamb C. J., Elkind Y. Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7608–7612. doi: 10.1073/pnas.91.16.7608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bell-Lelong D. A., Cusumano J. C., Meyer K., Chapple C. Cinnamate-4-hydroxylase expression in Arabidopsis. Regulation in response to development and the environment. Plant Physiol. 1997 Mar;113(3):729–738. doi: 10.1104/pp.113.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 1984 Nov 26;12(22):8711–8721. doi: 10.1093/nar/12.22.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bruce R. J., West C. A. Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. Plant Physiol. 1989 Nov;91(3):889–897. doi: 10.1104/pp.91.3.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Campbell M. M., Sederoff R. R. Variation in Lignin Content and Composition (Mechanisms of Control and Implications for the Genetic Improvement of Plants). Plant Physiol. 1996 Jan;110(1):3–13. doi: 10.1104/pp.110.1.3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chapple C. C., Vogt T., Ellis B. E., Somerville C. R. An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell. 1992 Nov;4(11):1413–1424. doi: 10.1105/tpc.4.11.1413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ebel J., Grisebach H. Reduction of cinnamic acids to cinnamyl alcohols with an enzyme preparation from cell suspension cultures of soybean (Glycine max). FEBS Lett. 1973 Mar 1;30(2):141–143. doi: 10.1016/0014-5793(73)80637-4. [DOI] [PubMed] [Google Scholar]
  8. Elkind Y., Edwards R., Mavandad M., Hedrick S. A., Ribak O., Dixon R. A., Lamb C. J. Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene. Proc Natl Acad Sci U S A. 1990 Nov;87(22):9057–9061. doi: 10.1073/pnas.87.22.9057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fahrendorf T., Ni W., Shorrosh B. S., Dixon R. A. Stress responses in alfalfa (Medicago sativa L.) XIX. Transcriptional activation of oxidative pentose phosphate pathway genes at the onset of the isoflavonoid phytoalexin response. Plant Mol Biol. 1995 Aug;28(5):885–900. doi: 10.1007/BF00042073. [DOI] [PubMed] [Google Scholar]
  10. Gross G. G., Zenk M. H. Isolation and properties of hydroxycinnamate: CoA ligase from lignifying tissue of Forsythia. Eur J Biochem. 1974 Mar 1;42(2):453–459. doi: 10.1111/j.1432-1033.1974.tb03359.x. [DOI] [PubMed] [Google Scholar]
  11. Görlach J., Raesecke H. R., Rentsch D., Regenass M., Roy P., Zala M., Keel C., Boller T., Amrhein N., Schmid J. Temporally distinct accumulation of transcripts encoding enzymes of the prechorismate pathway in elicitor-treated, cultured tomato cells. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3166–3170. doi: 10.1073/pnas.92.8.3166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hahlbrock K., Grisebach H. Formation of coenzyme a esters of cinnamic acids with an enzyme preparation from cell suspension cultures of parsley. FEBS Lett. 1970 Nov 9;11(1):62–64. doi: 10.1016/0014-5793(70)80492-6. [DOI] [PubMed] [Google Scholar]
  13. Hauffe K. D., Paszkowski U., Schulze-Lefert P., Hahlbrock K., Dangl J. L., Douglas C. J. A parsley 4CL-1 promoter fragment specifies complex expression patterns in transgenic tobacco. Plant Cell. 1991 May;3(5):435–443. doi: 10.1105/tpc.3.5.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kajita S., Katayama Y., Omori S. Alterations in the biosynthesis of lignin in transgenic plants with chimeric genes for 4-coumarate: coenzyme A ligase. Plant Cell Physiol. 1996 Oct;37(7):957–965. doi: 10.1093/oxfordjournals.pcp.a029045. [DOI] [PubMed] [Google Scholar]
  15. Keith B., Dong X. N., Ausubel F. M., Fink G. R. Differential induction of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase genes in Arabidopsis thaliana by wounding and pathogenic attack. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8821–8825. doi: 10.1073/pnas.88.19.8821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Knobloch K. H., Hahlbrock K. 4-Coumarate:CoA ligase from cell suspension cultures of Petroselinum hortense Hoffm. Partial purification, substrate specificity, and further properties. Arch Biochem Biophys. 1977 Nov;184(1):237–248. doi: 10.1016/0003-9861(77)90347-2. [DOI] [PubMed] [Google Scholar]
  17. Knobloch K. H., Hahlbrock K. Isoenzymes of p-coumarate: CoA ligase from cell suspension cultures of Glycine max. Eur J Biochem. 1975 Mar 17;52(2):311–320. doi: 10.1111/j.1432-1033.1975.tb03999.x. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lee D., Ellard M., Wanner L. A., Davis K. R., Douglas C. J. The Arabidopsis thaliana 4-coumarate:CoA ligase (4CL) gene: stress and developmentally regulated expression and nucleotide sequence of its cDNA. Plant Mol Biol. 1995 Aug;28(5):871–884. doi: 10.1007/BF00042072. [DOI] [PubMed] [Google Scholar]
  20. Lewis N. G., Yamamoto E. Lignin: occurrence, biogenesis and biodegradation. Annu Rev Plant Physiol Plant Mol Biol. 1990;41:455–496. doi: 10.1146/annurev.pp.41.060190.002323. [DOI] [PubMed] [Google Scholar]
  21. Logemann E., Wu S. C., Schröder J., Schmelzer E., Somssich I. E., Hahlbrock K. Gene activation by UV light, fungal elicitor or fungal infection in Petroselinum crispum is correlated with repression of cell cycle-related genes. Plant J. 1995 Dec;8(6):865–876. doi: 10.1046/j.1365-313x.1995.8060865.x. [DOI] [PubMed] [Google Scholar]
  22. Lozoya E., Hoffmann H., Douglas C., Schulz W., Scheel D., Hahlbrock K. Primary structures and catalytic properties of isoenzymes encoded by the two 4-coumarate: CoA ligase genes in parsley. Eur J Biochem. 1988 Oct 1;176(3):661–667. doi: 10.1111/j.1432-1033.1988.tb14328.x. [DOI] [PubMed] [Google Scholar]
  23. Lüderitz T., Schatz G., Grisebach H. Enzymic synthesis of lignin precursors. Purification and properties of 4-coumarate:CoA ligase from cambial sap of spruce (Picea abies L.). Eur J Biochem. 1982 Apr;123(3):583–586. [PubMed] [Google Scholar]
  24. Mavandad M., Edwards R., Liang X., Lamb C. J., Dixon R. A. Effects of trans-Cinnamic Acid on Expression of the Bean Phenylalanine Ammonia-Lyase Gene Family. Plant Physiol. 1990 Oct;94(2):671–680. doi: 10.1104/pp.94.2.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Meyer K., Cusumano J. C., Somerville C., Chapple C. C. Ferulate-5-hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450-dependent monooxygenases. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):6869–6874. doi: 10.1073/pnas.93.14.6869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Newman T., de Bruijn F. J., Green P., Keegstra K., Kende H., McIntosh L., Ohlrogge J., Raikhel N., Somerville S., Thomashow M. Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol. 1994 Dec;106(4):1241–1255. doi: 10.1104/pp.106.4.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ohl S., Hedrick S. A., Chory J., Lamb C. J. Functional properties of a phenylalanine ammonia-lyase promoter from Arabidopsis. Plant Cell. 1990 Sep;2(9):837–848. doi: 10.1105/tpc.2.9.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ragg H., Kuhn D. N., Hahlbrock K. Coordinated regulation of 4-coumarate:CoA ligase and phenylalanine ammonia-lyase mRNAs in cultured plant cells. J Biol Chem. 1981 Oct 10;256(19):10061–10065. [PubMed] [Google Scholar]
  29. Ranjeva R., Boudet A. M., Faggion R. Phenolic metabolism in petunia tissues. IV. - Properties of p-coumarate : coenzyme A ligase isoenzymes. Biochimie. 1976;58(10):1255–1262. doi: 10.1016/s0300-9084(76)80125-3. [DOI] [PubMed] [Google Scholar]
  30. Schröder J., Betz B., Hahlbrock K. Light-induced enzyme synthesis in cell suspension cultures of Petroselinum hortense. Demonstration in a heterologous cell-free system of rapid changes in the rate of phenylalanine ammonia-lyase synthesis. Eur J Biochem. 1976 Aug 16;67(2):527–541. doi: 10.1111/j.1432-1033.1976.tb10719.x. [DOI] [PubMed] [Google Scholar]
  31. Sewalt VJH., Ni W., Blount J. W., Jung H. G., Masoud S. A., Howles P. A., Lamb C., Dixon R. A. Reduced Lignin Content and Altered Lignin Composition in Transgenic Tobacco Down-Regulated in Expression of L-Phenylalanine Ammonia-Lyase or Cinnamate 4-Hydroxylase. Plant Physiol. 1997 Sep;115(1):41–50. doi: 10.1104/pp.115.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stöckigt J., Zenk M. H. Chemical syntheses and properties of hydroxycinnamoyl-coenzyme A derivatives. Z Naturforsch C. 1975 May-Jun;30(3):352–358. doi: 10.1515/znc-1975-5-609. [DOI] [PubMed] [Google Scholar]
  33. Töpfer R., Matzeit V., Gronenborn B., Schell J., Steinbiss H. H. A set of plant expression vectors for transcriptional and translational fusions. Nucleic Acids Res. 1987 Jul 24;15(14):5890–5890. doi: 10.1093/nar/15.14.5890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Valvekens D., Van Montagu M., Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. doi: 10.1073/pnas.85.15.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wanner L. A., Li G., Ware D., Somssich I. E., Davis K. R. The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana. Plant Mol Biol. 1995 Jan;27(2):327–338. doi: 10.1007/BF00020187. [DOI] [PubMed] [Google Scholar]
  36. Whetten R., Sederoff R. Lignin Biosynthesis. Plant Cell. 1995 Jul;7(7):1001–1013. doi: 10.1105/tpc.7.7.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ye Z. H., Kneusel R. E., Matern U., Varner J. E. An alternative methylation pathway in lignin biosynthesis in Zinnia. Plant Cell. 1994 Oct;6(10):1427–1439. doi: 10.1105/tpc.6.10.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES