Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1997 Nov;9(11):2025–2036. doi: 10.1105/tpc.9.11.2025

A strong inhibitor of gene expression in the 5' untranslated region of the pollen-specific LAT59 gene to tomato.

C Curie 1, S McCormick 1
PMCID: PMC157055  PMID: 9401125

Abstract

Promoter sequences that direct pollen-specific expression have been previously identified in the LAT59 (for late anther tomato) gene. Here, we show that the LAT59 sequences encoding the 5' untranslated region inhibit expression of reporter genes by > 20-fold in transient expression experiments and up to 300-fold after stable transformation. Inhibition occurred in somatic cells as well as in pollen. Our results indicate that the inhibitor still functions after pollen germination and therefore does not modulate the level of the LAT59 protein during pollen development. The presence of the leader sequence dramatically decreased mRNA accumulation but without affecting translation rate and mRNA stability. We believe that the leader inhibits transcription. We mapped the inhibitor to a region in the leader that coincides with a putative stem-loop and present evidence that this stem-loop participates in inhibition.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albani D., Sardana R., Robert L. S., Altosaar I., Arnison P. G., Fabijanski S. F. A Brassica napus gene family which shows sequence similarity to ascorbate oxidase is expressed in developing pollen. Molecular characterization and analysis of promoter activity in transgenic tobacco plants. Plant J. 1992 May;2(3):331–342. [PubMed] [Google Scholar]
  2. Amrolia P. J., Cunningham J. M., Ney P., Nienhuis A. W., Jane S. M. Identification of two novel regulatory elements within the 5'-untranslated region of the human A gamma-globin gene. J Biol Chem. 1995 May 26;270(21):12892–12898. doi: 10.1074/jbc.270.21.12892. [DOI] [PubMed] [Google Scholar]
  3. Bailey-Serres J., Dawe R. K. Both 5' and 3' sequences of maize adh1 mRNA are required for enhanced translation under low-oxygen conditions. Plant Physiol. 1996 Oct;112(2):685–695. doi: 10.1104/pp.112.2.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bate N., Spurr C., Foster G. D., Twell D. Maturation-specific translational enhancement mediated by the 5'-UTR of a late pollen transcript. Plant J. 1996 Oct;10(4):613–623. doi: 10.1046/j.1365-313x.1996.10040613.x. [DOI] [PubMed] [Google Scholar]
  5. Bentley D. L., Groudine M. A block to elongation is largely responsible for decreased transcription of c-myc in differentiated HL60 cells. Nature. 1986 Jun 12;321(6071):702–706. doi: 10.1038/321702a0. [DOI] [PubMed] [Google Scholar]
  6. Bentley D. L., Groudine M. Sequence requirements for premature termination of transcription in the human c-myc gene. Cell. 1988 Apr 22;53(2):245–256. doi: 10.1016/0092-8674(88)90386-8. [DOI] [PubMed] [Google Scholar]
  7. Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 1984 Nov 26;12(22):8711–8721. doi: 10.1093/nar/12.22.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bolle C., Sopory S., Lübberstedt T., Herrmann R. G., Oelmüller R. Segments encoding 5'-untranslated leaders of genes for thylakoid proteins contain cis-elements essential for transcription. Plant J. 1994 Oct;6(4):513–523. doi: 10.1046/j.1365-313x.1994.6040513.x. [DOI] [PubMed] [Google Scholar]
  9. Bovy A., Van den Berg C., De Vrieze G., Thompson W. F., Weisbeek P., Smeekens S. Light-regulated expression of the Arabidopsis thaliana ferredoxin gene requires sequences upstream and downstream of the transcription initiation site. Plant Mol Biol. 1995 Jan;27(1):27–39. doi: 10.1007/BF00019176. [DOI] [PubMed] [Google Scholar]
  10. Carrington J. C., Freed D. D. Cap-independent enhancement of translation by a plant potyvirus 5' nontranslated region. J Virol. 1990 Apr;64(4):1590–1597. doi: 10.1128/jvi.64.4.1590-1597.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Caspar T., Quail P. H. Promoter and leader regions involved in the expression of the Arabidopsis ferredoxin A gene. Plant J. 1993 Jan;3(1):161–174. doi: 10.1046/j.1365-313x.1993.t01-8-00999.x. [DOI] [PubMed] [Google Scholar]
  12. Chen G. T., Inouye M. Role of the AGA/AGG codons, the rarest codons in global gene expression in Escherichia coli. Genes Dev. 1994 Nov 1;8(21):2641–2652. doi: 10.1101/gad.8.21.2641. [DOI] [PubMed] [Google Scholar]
  13. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  14. Dickey L. F., Gallo-Meagher M., Thompson W. F. Light regulatory sequences are located within the 5' portion of the Fed-1 message sequence. EMBO J. 1992 Jun;11(6):2311–2317. doi: 10.1002/j.1460-2075.1992.tb05290.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dickey L. F., Nguyen T. T., Allen G. C., Thompson W. F. Light modulation of ferredoxin mRNA abundance requires an open reading frame. Plant Cell. 1994 Aug;6(8):1171–1176. doi: 10.1105/tpc.6.8.1171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Eyal Y., Curie C., McCormick S. Pollen specificity elements reside in 30 bp of the proximal promoters of two pollen-expressed genes. Plant Cell. 1995 Mar;7(3):373–384. doi: 10.1105/tpc.7.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  18. Gallie D. R., Lucas W. J., Walbot V. Visualizing mRNA expression in plant protoplasts: factors influencing efficient mRNA uptake and translation. Plant Cell. 1989 Mar;1(3):301–311. doi: 10.1105/tpc.1.3.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gallie D. R. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 1991 Nov;5(11):2108–2116. doi: 10.1101/gad.5.11.2108. [DOI] [PubMed] [Google Scholar]
  20. Geballe A. P., Spaete R. R., Mocarski E. S. A cis-acting element within the 5' leader of a cytomegalovirus beta transcript determines kinetic class. Cell. 1986 Sep 12;46(6):865–872. doi: 10.1016/0092-8674(86)90068-1. [DOI] [PubMed] [Google Scholar]
  21. Guerrero F. D., Crossland L., Smutzer G. S., Hamilton D. A., Mascarenhas J. P. Promoter sequences from a maize pollen-specific gene direct tissue-specific transcription in tobacco. Mol Gen Genet. 1990 Nov;224(2):161–168. doi: 10.1007/BF00271548. [DOI] [PubMed] [Google Scholar]
  22. Hultmark D., Klemenz R., Gehring W. J. Translational and transcriptional control elements in the untranslated leader of the heat-shock gene hsp22. Cell. 1986 Feb 14;44(3):429–438. doi: 10.1016/0092-8674(86)90464-2. [DOI] [PubMed] [Google Scholar]
  23. Jahnen W., Lush W. M., Clarke A. E. Inhibition of in Vitro Pollen Tube Growth by Isolated S-Glycoproteins of Nicotiana alata. Plant Cell. 1989 May;1(5):501–510. doi: 10.1105/tpc.1.5.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kao S. Y., Calman A. F., Luciw P. A., Peterlin B. M. Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature. 1987 Dec 3;330(6147):489–493. doi: 10.1038/330489a0. [DOI] [PubMed] [Google Scholar]
  26. Kaspar R. L., Kakegawa T., Cranston H., Morris D. R., White M. W. A regulatory cis element and a specific binding factor involved in the mitogenic control of murine ribosomal protein L32 translation. J Biol Chem. 1992 Jan 5;267(1):508–514. [PubMed] [Google Scholar]
  27. Kempe E., Muhs B., Schäfer M. Gene regulation in Drosophila spermatogenesis: analysis of protein binding at the translational control element TCE. Dev Genet. 1993;14(6):449–459. doi: 10.1002/dvg.1020140606. [DOI] [PubMed] [Google Scholar]
  28. Kozak M. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem. 1991 Oct 25;266(30):19867–19870. [PubMed] [Google Scholar]
  29. Kulikauskas R., McCormick S. Identification of the tobacco and Arabidopsis homologues of the pollen-expressed LAT59 gene of tomato. Plant Mol Biol. 1997 Jul;34(5):809–814. doi: 10.1023/a:1005856531693. [DOI] [PubMed] [Google Scholar]
  30. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  31. Mascarenhas J. P. Molecular Mechanisms of Pollen Tube Growth and Differentiation. Plant Cell. 1993 Oct;5(10):1303–1314. doi: 10.1105/tpc.5.10.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. McCormick S. Molecular analysis of male gametogenesis in plants. Trends Genet. 1991 Sep;7(9):298–303. doi: 10.1016/0168-9525(91)90312-E. [DOI] [PubMed] [Google Scholar]
  33. Newman T. C., Ohme-Takagi M., Taylor C. B., Green P. J. DST sequences, highly conserved among plant SAUR genes, target reporter transcripts for rapid decay in tobacco. Plant Cell. 1993 Jun;5(6):701–714. doi: 10.1105/tpc.5.6.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ow D. W., DE Wet J. R., Helinski D. R., Howell S. H., Wood K. V., Deluca M. Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science. 1986 Nov 14;234(4778):856–859. doi: 10.1126/science.234.4778.856. [DOI] [PubMed] [Google Scholar]
  35. Stripecke R., Oliveira C. C., McCarthy J. E., Hentze M. W. Proteins binding to 5' untranslated region sites: a general mechanism for translational regulation of mRNAs in human and yeast cells. Mol Cell Biol. 1994 Sep;14(9):5898–5909. doi: 10.1128/mcb.14.9.5898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Twell D., Klein T. M., Fromm M. E., McCormick S. Transient expression of chimeric genes delivered into pollen by microprojectile bombardment. Plant Physiol. 1989 Dec;91(4):1270–1274. doi: 10.1104/pp.91.4.1270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Twell D., Yamaguchi J., Wing R. A., Ushiba J., McCormick S. Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes Dev. 1991 Mar;5(3):496–507. doi: 10.1101/gad.5.3.496. [DOI] [PubMed] [Google Scholar]
  38. Weterings K., Schrauwen J., Wullems G., Twell D. Functional dissection of the promoter of the pollen-specific gene NTP303 reveals a novel pollen-specific, and conserved cis-regulatory element. Plant J. 1995 Jul;8(1):55–63. doi: 10.1046/j.1365-313x.1995.08010055.x. [DOI] [PubMed] [Google Scholar]
  39. Wright S. Regulation of eukaryotic gene expression by transcriptional attenuation. Mol Biol Cell. 1993 Jul;4(7):661–668. doi: 10.1091/mbc.4.7.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. d'Aubenton Carafa Y., Brody E., Thermes C. Prediction of rho-independent Escherichia coli transcription terminators. A statistical analysis of their RNA stem-loop structures. J Mol Biol. 1990 Dec 20;216(4):835–858. doi: 10.1016/s0022-2836(99)80005-9. [DOI] [PubMed] [Google Scholar]
  41. van Hoof A., Green P. J. Premature nonsense codons decrease the stability of phytohemagglutinin mRNA in a position-dependent manner. Plant J. 1996 Sep;10(3):415–424. doi: 10.1046/j.1365-313x.1996.10030415.x. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES