Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1997 Dec;9(12):2159–2170. doi: 10.1105/tpc.9.12.2159

Disruption of interfascicular fiber differentiation in an Arabidopsis mutant.

R Zhong 1, J J Taylor 1, Z H Ye 1
PMCID: PMC157065  PMID: 9437861

Abstract

Arabidopsis develops interfascicular fibers in stems for needed support of shoots. To study the molecular mechanisms controlling fiber differentiation, we isolated an interfascicular fiber mutant (ifl1) by screening ethyl methanesulfonate-mutagenized Arabidopsis populations. This mutant lacks normal interfascicular fibers in stems. Interestingly, some interfascicular cells were sclerified in the upper parts but not in the basal parts of the ifl1 stems. These sclerified cells were differentiated at a position different from that of interfascicular fibers in the wild type. Lack of interfascicular fibers correlated with a dramatic change of stem strength. Stems of the mutant could not stand erect and were easily broken by bending. Quantitative measurement showed that it took approximately six times less force to break basal stems of the mutant than of the wild type. In addition, noticeable morphological changes were associated with the mutant, including long stems, dark green leaves with delayed senescence, and reduced numbers of cauline leaves and branches. Genetic analysis showed that the ifl1 mutation was monogenic and recessive. The ifl1 locus was mapped to a region between the 17C2 and 7H9L markers on chromosome 5. Isolation of the ifl1 mutant provides a novel means to study the genetic control of fiber differentiation.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aloni R. Role of auxin and gibberellin in differentiation of primary Phloem fibers. Plant Physiol. 1979 Apr;63(4):609–614. doi: 10.1104/pp.63.4.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aloni R. Role of cytokinin in differentiation of secondary xylem fibers. Plant Physiol. 1982 Dec;70(6):1631–1633. doi: 10.1104/pp.70.6.1631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boerjan W., Cervera M. T., Delarue M., Beeckman T., Dewitte W., Bellini C., Caboche M., Van Onckelen H., Van Montagu M., Inzé D. Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell. 1995 Sep;7(9):1405–1419. doi: 10.1105/tpc.7.9.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carland F. M., McHale N. A. LOP1: a gene involved in auxin transport and vascular patterning in Arabidopsis. Development. 1996 Jun;122(6):1811–1819. doi: 10.1242/dev.122.6.1811. [DOI] [PubMed] [Google Scholar]
  5. Chory J., Nagpal P., Peto C. A. Phenotypic and Genetic Analysis of det2, a New Mutant That Affects Light-Regulated Seedling Development in Arabidopsis. Plant Cell. 1991 May;3(5):445–459. doi: 10.1105/tpc.3.5.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clouse S. D. Molecular genetic studies confirm the role of brassinosteroids in plant growth and development. Plant J. 1996 Jul;10(1):1–8. doi: 10.1046/j.1365-313x.1996.10010001.x. [DOI] [PubMed] [Google Scholar]
  7. Cocciolone S. M., Cone K. C. Pl-Bh, an anthocyanin regulatory gene of maize that leads to variegated pigmentation. Genetics. 1993 Oct;135(2):575–588. doi: 10.1093/genetics/135.2.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Garbers C., DeLong A., Deruére J., Bernasconi P., Söll D. A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis. EMBO J. 1996 May 1;15(9):2115–2124. [PMC free article] [PubMed] [Google Scholar]
  9. Jacobsen S. E., Olszewski N. E. Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction. Plant Cell. 1993 Aug;5(8):887–896. doi: 10.1105/tpc.5.8.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. King J. J., Stimart D. P., Fisher R. H., Bleecker A. B. A Mutation Altering Auxin Homeostasis and Plant Morphology in Arabidopsis. Plant Cell. 1995 Dec;7(12):2023–2037. doi: 10.1105/tpc.7.12.2023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kokubo A., Kuraishi S., Sakurai N. Culm strength of barley : correlation among maximum bending stress, cell wall dimensions, and cellulose content. Plant Physiol. 1989 Nov;91(3):876–882. doi: 10.1104/pp.91.3.876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Konieczny A., Ausubel F. M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993 Aug;4(2):403–410. doi: 10.1046/j.1365-313x.1993.04020403.x. [DOI] [PubMed] [Google Scholar]
  13. Li J., Nagpal P., Vitart V., McMorris T. C., Chory J. A role for brassinosteroids in light-dependent development of Arabidopsis. Science. 1996 Apr 19;272(5260):398–401. doi: 10.1126/science.272.5260.398. [DOI] [PubMed] [Google Scholar]
  14. Liu Y. G., Whittier R. F. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics. 1995 Feb 10;25(3):674–681. doi: 10.1016/0888-7543(95)80010-j. [DOI] [PubMed] [Google Scholar]
  15. Niyogi K. K., Last R. L., Fink G. R., Keith B. Suppressors of trp1 fluorescence identify a new arabidopsis gene, TRP4, encoding the anthranilate synthase beta subunit. Plant Cell. 1993 Sep;5(9):1011–1027. doi: 10.1105/tpc.5.9.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Okada K., Ueda J., Komaki M. K., Bell C. J., Shimura Y. Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation. Plant Cell. 1991 Jul;3(7):677–684. doi: 10.1105/tpc.3.7.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Reiter W. D., Chapple C. C., Somerville C. R. Altered growth and cell walls in a fucose-deficient mutant of Arabidopsis. Science. 1993 Aug 20;261(5124):1032–1035. doi: 10.1126/science.261.5124.1032. [DOI] [PubMed] [Google Scholar]
  18. Saks Y., Feigenbaum P., Aloni R. Regulatory effect of cytokinin on secondary xylem fiber formation in an in vivo system. Plant Physiol. 1984 Nov;76(3):638–642. doi: 10.1104/pp.76.3.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Szekeres M., Németh K., Koncz-Kálmán Z., Mathur J., Kauschmann A., Altmann T., Rédei G. P., Nagy F., Schell J., Koncz C. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell. 1996 Apr 19;85(2):171–182. doi: 10.1016/s0092-8674(00)81094-6. [DOI] [PubMed] [Google Scholar]
  20. Turner S. R., Somerville C. R. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell. 1997 May;9(5):689–701. doi: 10.1105/tpc.9.5.689. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES