Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1997 Dec;9(12):2183–2196. doi: 10.1105/tpc.9.12.2183

Antisense suppression of phospholipase D alpha retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves.

L Fan 1, S Zheng 1, X Wang 1
PMCID: PMC157067  PMID: 9437863

Abstract

Membrane disruption has been proposed to be a key event in plant senescence, and phospholipase D (PLD; EC 3.1.4.4) has been thought to play an important role in membrane deterioration. We recently cloned and biochemically characterized three different PLDs from Arabidopsis. In this study, we investigated the role of the most prevalent phospholipid-hydrolyzing enzyme, PLD alpha, in membrane degradation and senescence in Arabidopsis. The expression of PLD alpha was suppressed by introducing a PLD alpha antisense cDNA fragment into Arabidopsis. When incubated with abscisic acid and ethylene, leaves detached from the PLD alpha-deficient transgenic plants showed a slower rate of senescence than did those from wild-type and transgenic control plants. The retardation of senescence was demonstrated by delayed leaf yellowing, lower ion leakage, greater photosynthetic activity, and higher content of chlorophyll and phospholipids in the PLD alpha antisense leaves than in those of the wild type. Treatment of detached leaves with abscisic acid and ethylene stimulated PLD alpha expression, as indicated by increases in PLD alpha mRNA, protein, and activity. In the absence of abscisic acid and ethylene, however, detached leaves from the PLD alpha-deficient and wild-type plants showed a similar rate of senescence. In addition, the suppression of PLD alpha did not alter natural plant growth and development. These data suggest that PLD alpha is an important mediator in phytohormone-promoted senescence in detached leaves but is not a direct promoter of natural senescence. The physiological relevance of these findings is discussed.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beutelmann P., Kende H. Membrane Lipids in Senescing Flower Tissue of Ipomoea tricolor. Plant Physiol. 1977 May;59(5):888–893. doi: 10.1104/pp.59.5.888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bürner H., Benz R., Gimmler H., Hartung W., Stillwell W. Abscisic acid-lipid interactions: a phospholipid monolayer study. Biochim Biophys Acta. 1993 Aug 15;1150(2):165–172. doi: 10.1016/0005-2736(93)90086-f. [DOI] [PubMed] [Google Scholar]
  3. Crafts-Brandner S. J., Below F. E., Harper J. E., Hageman R. H. Effects of Pod Removal on Metabolism and Senescence of Nodulating and Nonnodulating Soybean Isolines: II. Enzymes and Chlorophyll. Plant Physiol. 1984 Jun;75(2):318–322. doi: 10.1104/pp.75.2.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dyer J. H., Ryu S. B., Wang X. Multiple Forms of Phospholipase D following Germination and during Leaf Development of Castor Bean. Plant Physiol. 1994 Jun;105(2):715–724. doi: 10.1104/pp.105.2.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Heller M. Phospholipase D. Adv Lipid Res. 1978;16:267–326. doi: 10.1016/b978-0-12-024916-9.50011-1. [DOI] [PubMed] [Google Scholar]
  6. Honigberg S. M., Conicella C., Espositio R. E. Commitment to meiosis in Saccharomyces cerevisiae: involvement of the SPO14 gene. Genetics. 1992 Apr;130(4):703–716. doi: 10.1093/genetics/130.4.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lafleur M., Bloom M., Cullis P. R. Lipid polymorphism and hydrocarbon order. Biochem Cell Biol. 1990 Jan;68(1):1–8. doi: 10.1139/o90-001. [DOI] [PubMed] [Google Scholar]
  8. Munnik T., Arisz S. A., De Vrije T., Musgrave A. G Protein Activation Stimulates Phospholipase D Signaling in Plants. Plant Cell. 1995 Dec;7(12):2197–2210. doi: 10.1105/tpc.7.12.2197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pappan K., Qin W., Dyer J. H., Zheng L., Wang X. Molecular cloning and functional analysis of polyphosphoinositide-dependent phospholipase D, PLDbeta, from Arabidopsis. J Biol Chem. 1997 Mar 14;272(11):7055–7061. doi: 10.1074/jbc.272.11.7055. [DOI] [PubMed] [Google Scholar]
  10. Pappan K., Zheng S., Wang X. Identification and characterization of a novel plant phospholipase D that requires polyphosphoinositides and submicromolar calcium for activity in Arabidopsis. J Biol Chem. 1997 Mar 14;272(11):7048–7054. doi: 10.1074/jbc.272.11.7048. [DOI] [PubMed] [Google Scholar]
  11. Ponting C. P., Parker P. J. Extending the C2 domain family: C2s in PKCs delta, epsilon, eta, theta, phospholipases, GAPs, and perforin. Protein Sci. 1996 Jan;5(1):162–166. doi: 10.1002/pro.5560050120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Qin W., Pappan K., Wang X. Molecular heterogeneity of phospholipase D (PLD). Cloning of PLDgamma and regulation of plant PLDgamma, -beta, and -alpha by polyphosphoinositides and calcium. J Biol Chem. 1997 Nov 7;272(45):28267–28273. doi: 10.1074/jbc.272.45.28267. [DOI] [PubMed] [Google Scholar]
  13. Rose K., Rudge S. A., Frohman M. A., Morris A. J., Engebrecht J. Phospholipase D signaling is essential for meiosis. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12151–12155. doi: 10.1073/pnas.92.26.12151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rouser G., Fkeischer S., Yamamoto A. Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 1970 May;5(5):494–496. doi: 10.1007/BF02531316. [DOI] [PubMed] [Google Scholar]
  15. Ryu S. B., Wang X. Expression of Phospholipase D during Castor Bean Leaf Senescence. Plant Physiol. 1995 Jun;108(2):713–719. doi: 10.1104/pp.108.2.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schardl C. L., Byrd A. D., Benzion G., Altschuler M. A., Hildebrand D. F., Hunt A. G. Design and construction of a versatile system for the expression of foreign genes in plants. Gene. 1987;61(1):1–11. doi: 10.1016/0378-1119(87)90359-3. [DOI] [PubMed] [Google Scholar]
  17. Shao X., Davletov B. A., Sutton R. B., Südhof T. C., Rizo J. Bipartite Ca2+-binding motif in C2 domains of synaptotagmin and protein kinase C. Science. 1996 Jul 12;273(5272):248–251. doi: 10.1126/science.273.5272.248. [DOI] [PubMed] [Google Scholar]
  18. Suttle J. C., Kende H. Ethylene Action and Loss of Membrane Integrity during Petal Senescence in Tradescantia. Plant Physiol. 1980 Jun;65(6):1067–1072. doi: 10.1104/pp.65.6.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Thompson J. E., Mayak S., Shinitzky M., Halevy A. H. Acceleration of membrane senescence in cut carnation flowers by treatment with ethylene. Plant Physiol. 1982 Apr;69(4):859–863. doi: 10.1104/pp.69.4.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Todd J. F., Paliyath G., Thompson J. E. Characteristics of a membrane-associated lipoxygenase in tomato fruit. Plant Physiol. 1990 Nov;94(3):1225–1232. doi: 10.1104/pp.94.3.1225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Van Bilsen DGJL., Hoekstra F. A. Decreased Membrane Integrity in Aging Typha latifolia L.Pollen (Accumulation of Lysolipids and Free Fatty Acids). Plant Physiol. 1993 Feb;101(2):675–682. doi: 10.1104/pp.101.2.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Voisine R., Vezina L. P., Willemot C. Modification of Phospholipid Catabolism in Microsomal Membranes of [gamma]-Irradiated Cauliflower (Brassica oleracea L.). Plant Physiol. 1993 May;102(1):213–218. doi: 10.1104/pp.102.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Waksman M., Eli Y., Liscovitch M., Gerst J. E. Identification and characterization of a gene encoding phospholipase D activity in yeast. J Biol Chem. 1996 Feb 2;271(5):2361–2364. doi: 10.1074/jbc.271.5.2361. [DOI] [PubMed] [Google Scholar]
  24. Wang X., Xu L., Zheng L. Cloning and expression of phosphatidylcholine-hydrolyzing phospholipase D from Ricinus communis L. J Biol Chem. 1994 Aug 12;269(32):20312–20317. [PubMed] [Google Scholar]
  25. Xu L., Paulsen A. Q., Ryu S. B., Wang X. Intracellular Localization of Phospholipase D in Leaves and Seedling Tissues of Castor Bean. Plant Physiol. 1996 May;111(1):101–107. doi: 10.1104/pp.111.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Xu L., Zheng S., Zheng L., Wang X. Promoter analysis and expression of a phospholipase D gene from castor bean. Plant Physiol. 1997 Oct;115(2):387–395. doi: 10.1104/pp.115.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yoshida S. Freezing injury and phospholipid degradation in vivo in woody plant cells: I. Subcellular localization of phospholipase d in living bark tissues of the black locust tree (robinia pseudoacacia L.). Plant Physiol. 1979 Aug;64(2):241–246. doi: 10.1104/pp.64.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Young S. A., Wang X., Leach J. E. Changes in the Plasma Membrane Distribution of Rice Phospholipase D during Resistant Interactions with Xanthomonas oryzae pv oryzae. Plant Cell. 1996 Jun;8(6):1079–1090. doi: 10.1105/tpc.8.6.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES