Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1997 Dec;9(12):2243–2259. doi: 10.1105/tpc.9.12.2243

Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots.

A Moons 1, E Prinsen 1, G Bauw 1, M Van Montagu 1
PMCID: PMC157071  PMID: 9437865

Abstract

Abscisic acid (ABA) and jasmonates have been implicated in responses to water deficit and wounding. We compared the molecular and physiological effects of jasmonic acid (JA) (< or = 10 microM), ABA, and salt stress in roots of rice. JA markedly induced a cationic peroxidase, two novel 32- and 28-kD proteins, acidic PR-1 and PR-10 pathogenesis-related proteins, and the salt stress-responsive SalT protein in roots. Most JA-responsive proteins (JIPs) from roots also accumulated when plants were subjected to salt stress. None of the JIPs accumulated when plants were treated with ABA. JA did not induce an ABA-responsive group 3 late-embryogenesis abundant (LEA) protein. Salt stress and ABA but not JA induced oslea3 transcript accumulation. By contrast, JA, ABA, and salt stress induced transcript accumulation of salT and osdrr, which encodes a rice PR-10 protein. However, ABA also negatively affected salT transcript accumulation, whereas JA negatively affected ABA-induced oslea3 transcript levels. Endogenous root ABA and methyl jasmonate levels showed a differential increase with the dose and the duration of salt stress. The results indicate that ABA and jasmonates antagonistically regulated the expression of salt stress-inducible proteins associated with water deficit or defense responses.

Full Text

The Full Text of this article is available as a PDF (4.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander D., Goodman R. M., Gut-Rella M., Glascock C., Weymann K., Friedrich L., Maddox D., Ahl-Goy P., Luntz T., Ward E. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7327–7331. doi: 10.1073/pnas.90.15.7327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andresen I., Becker W., Schlüter K., Burges J., Parthier B., Apel K. The identification of leaf thionin as one of the main jasmonate-induced proteins of barley (Hordeum vulgare). Plant Mol Biol. 1992 May;19(2):193–204. doi: 10.1007/BF00027341. [DOI] [PubMed] [Google Scholar]
  3. Becker W., Apel K. Isolation and characterization of a cDNA clone encoding a novel jasmonate-induced protein of barley (Hordeum vulgare L.). Plant Mol Biol. 1992 Sep;19(6):1065–1067. doi: 10.1007/BF00040538. [DOI] [PubMed] [Google Scholar]
  4. Bell E., Creelman R. A., Mullet J. E. A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8675–8679. doi: 10.1073/pnas.92.19.8675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Breiteneder H., Ferreira F., Hoffmann-Sommergruber K., Ebner C., Breitenbach M., Rumpold H., Kraft D., Scheiner O. Four recombinant isoforms of Cor a I, the major allergen of hazel pollen, show different IgE-binding properties. Eur J Biochem. 1993 Mar 1;212(2):355–362. doi: 10.1111/j.1432-1033.1993.tb17669.x. [DOI] [PubMed] [Google Scholar]
  6. Chaudhry B., Müller-Uri F., Cameron-Mills V., Gough S., Simpson D., Skriver K., Mundy J. The barley 60 kDa jasmonate-induced protein (JIP60) is a novel ribosome-inactivating protein. Plant J. 1994 Dec;6(6):815–824. doi: 10.1046/j.1365-313x.1994.6060815.x. [DOI] [PubMed] [Google Scholar]
  7. Claes B., Dekeyser R., Villarroel R., Van den Bulcke M., Bauw G., Van Montagu M., Caplan A. Characterization of a rice gene showing organ-specific expression in response to salt stress and drought. Plant Cell. 1990 Jan;2(1):19–27. doi: 10.1105/tpc.2.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cornelissen B. J., Hooft van Huijsduijnen R. A., Van Loon L. C., Bol J. F. Molecular characterization of messenger RNAs for 'pathogenesis related' proteins la, lb and lc, induced by TMV infection of tobacco. EMBO J. 1986 Jan;5(1):37–40. doi: 10.1002/j.1460-2075.1986.tb04174.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Creelman R. A., Mason H. S., Bensen R. J., Boyer J. S., Mullet J. E. Water Deficit and Abscisic Acid Cause Differential Inhibition of Shoot versus Root Growth in Soybean Seedlings : Analysis of Growth, Sugar Accumulation, and Gene Expression. Plant Physiol. 1990 Jan;92(1):205–214. doi: 10.1104/pp.92.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Creelman R. A., Mullet J. E. Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4114–4119. doi: 10.1073/pnas.92.10.4114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Crowell D. N., John M. E., Russell D., Amasino R. M. Characterization of a stress-induced, developmentally regulated gene family from soybean. Plant Mol Biol. 1992 Feb;18(3):459–466. doi: 10.1007/BF00040662. [DOI] [PubMed] [Google Scholar]
  12. Falk A., Taipalensuu J., Ek B., Lenman M., Rask L. Characterization of rapeseed myrosinase-binding protein. Planta. 1995;195(3):387–395. doi: 10.1007/BF00202596. [DOI] [PubMed] [Google Scholar]
  13. Farmer E. E., Ryan C. A. Octadecanoid Precursors of Jasmonic Acid Activate the Synthesis of Wound-Inducible Proteinase Inhibitors. Plant Cell. 1992 Feb;4(2):129–134. doi: 10.1105/tpc.4.2.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Godoy J. A., Pardo J. M., Pintor-Toro J. A. A tomato cDNA inducible by salt stress and abscisic acid: nucleotide sequence and expression pattern. Plant Mol Biol. 1990 Nov;15(5):695–705. doi: 10.1007/BF00016120. [DOI] [PubMed] [Google Scholar]
  15. Grimes H. D., Koetje D. S., Franceschi V. R. Expression, activity, and cellular accumulation of methyl jasmonate-responsive lipoxygenase in soybean seedlings. Plant Physiol. 1992 Sep;100(1):433–443. doi: 10.1104/pp.100.1.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gundlach H., Müller M. J., Kutchan T. M., Zenk M. H. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2389–2393. doi: 10.1073/pnas.89.6.2389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hildmann T., Ebneth M., Peña-Cortés H., Sánchez-Serrano J. J., Willmitzer L., Prat S. General roles of abscisic and jasmonic acids in gene activation as a result of mechanical wounding. Plant Cell. 1992 Sep;4(9):1157–1170. doi: 10.1105/tpc.4.9.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hong B., Barg R., Ho T. H. Developmental and organ-specific expression of an ABA- and stress-induced protein in barley. Plant Mol Biol. 1992 Feb;18(4):663–674. doi: 10.1007/BF00020009. [DOI] [PubMed] [Google Scholar]
  19. Ingram J., Bartels D. THE MOLECULAR BASIS OF DEHYDRATION TOLERANCE IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):377–403. doi: 10.1146/annurev.arplant.47.1.377. [DOI] [PubMed] [Google Scholar]
  20. Lee J., Parthier B., Löbler M. Jasmonate signalling can be uncoupled from abscisic acid signalling in barley: identification of jasmonate-regulated transcripts which are not induced by abscisic acid. Planta. 1996;199(4):625–632. doi: 10.1007/BF00195196. [DOI] [PubMed] [Google Scholar]
  21. Liu D., Raghothama K. G., Hasegawa P. M., Bressan R. A. Osmotin overexpression in potato delays development of disease symptoms. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1888–1892. doi: 10.1073/pnas.91.5.1888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Maslenkova L. T., Miteva T. S., Popova L. P. Changes in the polypeptide patterns of barley seedlings exposed to jasmonic Acid and salinity. Plant Physiol. 1992 Feb;98(2):700–707. doi: 10.1104/pp.98.2.700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mason H. S., DeWald D. B., Mullet J. E. Identification of a methyl jasmonate-responsive domain in the soybean vspB promoter. Plant Cell. 1993 Mar;5(3):241–251. doi: 10.1105/tpc.5.3.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mason H. S., Mullet J. E. Expression of two soybean vegetative storage protein genes during development and in response to water deficit, wounding, and jasmonic acid. Plant Cell. 1990 Jun;2(6):569–579. doi: 10.1105/tpc.2.6.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Matzke M. A., Matzke AJM. How and Why Do Plants Inactivate Homologous (Trans)genes? Plant Physiol. 1995 Mar;107(3):679–685. doi: 10.1104/pp.107.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Melan M. A., Dong X., Endara M. E., Davis K. R., Ausubel F. M., Peterman T. K. An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol. 1993 Feb;101(2):441–450. doi: 10.1104/pp.101.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Midoh N., Iwata M. Cloning and characterization of a probenazole-inducible gene for an intracellular pathogenesis-related protein in rice. Plant Cell Physiol. 1996 Jan;37(1):9–18. doi: 10.1093/oxfordjournals.pcp.a028918. [DOI] [PubMed] [Google Scholar]
  28. Moons A., Bauw G., Prinsen E., Van Montagu M., Van der Straeten D. Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties. Plant Physiol. 1995 Jan;107(1):177–186. doi: 10.1104/pp.107.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Moons A., De Keyser A., Van Montagu M. A group 3 LEA cDNA of rice, responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response. Gene. 1997 Jun 3;191(2):197–204. doi: 10.1016/s0378-1119(97)00059-0. [DOI] [PubMed] [Google Scholar]
  30. Moons A., Gielen J., Vandekerckhove J., Van der Straeten D., Gheysen G., Van Montagu M. An abscisic-acid- and salt-stress-responsive rice cDNA from a novel plant gene family. Planta. 1997;202(4):443–454. doi: 10.1007/s004250050148. [DOI] [PubMed] [Google Scholar]
  31. Mueller M. J., Brodschelm W., Spannagl E., Zenk M. H. Signaling in the elicitation process is mediated through the octadecanoid pathway leading to jasmonic acid. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7490–7494. doi: 10.1073/pnas.90.16.7490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mundy J., Chua N. H. Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J. 1988 Aug;7(8):2279–2286. doi: 10.1002/j.1460-2075.1988.tb03070.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Prinsen E., Redig P., Strnad M., Galís I., Van Dongen W., Van Onckelen H. Quantifying phytohormones in transformed plants. Methods Mol Biol. 1995;44:245–262. doi: 10.1385/0-89603-302-3:245. [DOI] [PubMed] [Google Scholar]
  34. Pēna-Cortés H., Sánchez-Serrano J. J., Mertens R., Willmitzer L., Prat S. Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor II gene in potato and tomato. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9851–9855. doi: 10.1073/pnas.86.24.9851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Reinbothe S., Mollenhauer B., Reinbothe C. JIPs and RIPs: the regulation of plant gene expression by jasmonates in response to environmental cues and pathogens. Plant Cell. 1994 Sep;6(9):1197–1209. doi: 10.1105/tpc.6.9.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ried J. L., Walker-Simmons M. K. Group 3 Late Embryogenesis Abundant Proteins in Desiccation-Tolerant Seedlings of Wheat (Triticum aestivum L.). Plant Physiol. 1993 May;102(1):125–131. doi: 10.1104/pp.102.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rouster J., Leah R., Mundy J., Cameron-Mills V. Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant J. 1997 Mar;11(3):513–523. doi: 10.1046/j.1365-313x.1997.11030513.x. [DOI] [PubMed] [Google Scholar]
  38. Saab I. N., Sharp R. E., Pritchard J., Voetberg G. S. Increased endogenous abscisic Acid maintains primary root growth and inhibits shoot growth of maize seedlings at low water potentials. Plant Physiol. 1990 Aug;93(4):1329–1336. doi: 10.1104/pp.93.4.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Schweizer P., Buchala A., Silverman P., Seskar M., Raskin I., Metraux J. P. Jasmonate-Inducible Genes Are Activated in Rice by Pathogen Attack without a Concomitant Increase in Endogenous Jasmonic Acid Levels. Plant Physiol. 1997 May;114(1):79–88. doi: 10.1104/pp.114.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Shinozaki K., Yamaguchi-Shinozaki K. Gene Expression and Signal Transduction in Water-Stress Response. Plant Physiol. 1997 Oct;115(2):327–334. doi: 10.1104/pp.115.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Staswick P. E. Jasmonate, genes, and fragrant signals. Plant Physiol. 1992 Jul;99(3):804–807. doi: 10.1104/pp.99.3.804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Taipalensuu J., Falk A., Ek B., Rask L. Myrosinase-binding proteins are derived from a large wound-inducible and repetitive transcript. Eur J Biochem. 1997 Feb 1;243(3):605–611. doi: 10.1111/j.1432-1033.1997.t01-1-00605.x. [DOI] [PubMed] [Google Scholar]
  43. Taipalensuu J., Falk A., Rask L. A wound- and methyl jasmonate-inducible transcript coding for a myrosinase-associated protein with similarities to an early nodulin. Plant Physiol. 1996 Feb;110(2):483–491. doi: 10.1104/pp.110.2.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wilen R. W., van Rooijen G. J., Pearce D. W., Pharis R. P., Holbrook L. A., Moloney M. M. Effects of jasmonic Acid on embryo-specific processes in brassica and linum oilseeds. Plant Physiol. 1991 Feb;95(2):399–405. doi: 10.1104/pp.95.2.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Xu Y., Chang PFL., Liu D., Narasimhan M. L., Raghothama K. G., Hasegawa P. M., Bressan R. A. Plant Defense Genes Are Synergistically Induced by Ethylene and Methyl Jasmonate. Plant Cell. 1994 Aug;6(8):1077–1085. doi: 10.1105/tpc.6.8.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES