Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1997 Dec;9(12):2271–2280. doi: 10.1105/tpc.9.12.2271

Biochemical characterization of Arabidopsis wild-type and mutant phytochrome B holoproteins.

T D Elich 1, J Chory 1
PMCID: PMC157073  PMID: 9437866

Abstract

Although phytochrome B (phyB) plays a particularly important role throughout the life cycle of a plant, it has not been studied in detail at the molecular level due to its low abundance. Here, we report on the expression, assembly with chromophore, and purification of epitope-tagged Arabidopsis phyB. In addition, we have reconstructed two missense mutations, phyB-4 and phyB-101, isolated in long hypocotyl screens. We show that mutant proteins phyB-4 and phyB-101 exhibit altered spectrophotometric and biochemical properties relative to the wild-type protein. In particular, we demonstrate that phyB-101 Pfr exhibits rapid nonphotochemical (dark) reversion to Pr that results in a lower photoequilibrium level of the active Pfr form. We conclude that this occurs in vivo as well because phyB-101 mutants are shown to lack an end-of-day-far-red hypocotyl elongation response that requires a stable Pfr species. We propose that this Pfr instability may be the primary molecular mechanism underlying the phyB-101 mutant phenotype.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andel F., 3rd, Lagarias J. C., Mathies R. A. Resonance raman analysis of chromophore structure in the lumi-R photoproduct of phytochrome. Biochemistry. 1996 Dec 17;35(50):15997–16008. doi: 10.1021/bi962175k. [DOI] [PubMed] [Google Scholar]
  2. Casal J. J. Phytochrome A enhances the promotion of hypocotyl growth caused by reductions in levels of phytochrome B in its far-red-light-absorbing form in light-grown Arabidopsis thaliana. Plant Physiol. 1996 Nov;112(3):965–973. doi: 10.1104/pp.112.3.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cherry J. R., Hondred D., Walker J. M., Keller J. M., Hershey H. P., Vierstra R. D. Carboxy-terminal deletion analysis of oat phytochrome A reveals the presence of separate domains required for structure and biological activity. Plant Cell. 1993 May;5(5):565–575. doi: 10.1105/tpc.5.5.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Elich T. D., Chory J. Initial events in phytochrome signalling: still in the dark. Plant Mol Biol. 1994 Dec;26(5):1315–1327. doi: 10.1007/BF00016477. [DOI] [PubMed] [Google Scholar]
  5. Elich T. D., Lagarias J. C. Formation of a photoreversible phycocyanobilin-apophytochrome adduct in vitro. J Biol Chem. 1989 Aug 5;264(22):12902–12908. [PubMed] [Google Scholar]
  6. Hamazato F., Shinomura T., Hanzawa H., Chory J., Furuya M. Fluence and wavelength requirements for Arabidopsis CAB gene induction by different phytochromes. Plant Physiol. 1997 Dec;115(4):1533–1540. doi: 10.1104/pp.115.4.1533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kay S. A. PAS, present, and future: clues to the origins of circadian clocks. Science. 1997 May 2;276(5313):753–754. doi: 10.1126/science.276.5313.753. [DOI] [PubMed] [Google Scholar]
  8. Kieber J. J., Rothenberg M., Roman G., Feldmann K. A., Ecker J. R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell. 1993 Feb 12;72(3):427–441. doi: 10.1016/0092-8674(93)90119-b. [DOI] [PubMed] [Google Scholar]
  9. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  10. Kunkel T., Speth V., Büche C., Schäfer E. In vivo characterization of phytochrome-phycocyanobilin adducts in yeast. J Biol Chem. 1995 Aug 25;270(34):20193–20200. doi: 10.1074/jbc.270.34.20193. [DOI] [PubMed] [Google Scholar]
  11. Kunkel T., Tomizawa K., Kern R., Furuya M., Chua N. H., Schäfer E. In vitro formation of a photoreversible adduct of phycocyanobilin and tobacco apophytochrome B. Eur J Biochem. 1993 Aug 1;215(3):587–594. doi: 10.1111/j.1432-1033.1993.tb18069.x. [DOI] [PubMed] [Google Scholar]
  12. Lagarias D. M., Wu S. H., Lagarias J. C. Atypical phytochrome gene structure in the green alga Mesotaenium caldariorum. Plant Mol Biol. 1995 Dec;29(6):1127–1142. doi: 10.1007/BF00020457. [DOI] [PubMed] [Google Scholar]
  13. Li L., Lagarias J. C. Phytochrome assembly. Defining chromophore structural requirements for covalent attachment and photoreversibility. J Biol Chem. 1992 Sep 25;267(27):19204–19210. [PubMed] [Google Scholar]
  14. Murphy J. T., Lagarias J. C. Purification and characterization of recombinant affinity peptide-tagged oat phytochrome A. Photochem Photobiol. 1997 Apr;65(4):750–758. doi: 10.1111/j.1751-1097.1997.tb01920.x. [DOI] [PubMed] [Google Scholar]
  15. Nagatani A., Reed J. W., Chory J. Isolation and Initial Characterization of Arabidopsis Mutants That Are Deficient in Phytochrome A. Plant Physiol. 1993 May;102(1):269–277. doi: 10.1104/pp.102.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Parks B. M., Quail P. H. hy8, a new class of arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell. 1993 Jan;5(1):39–48. doi: 10.1105/tpc.5.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Quail P. H., Boylan M. T., Parks B. M., Short T. W., Xu Y., Wagner D. Phytochromes: photosensory perception and signal transduction. Science. 1995 May 5;268(5211):675–680. doi: 10.1126/science.7732376. [DOI] [PubMed] [Google Scholar]
  18. Reed J. W., Nagpal P., Poole D. S., Furuya M., Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell. 1993 Feb;5(2):147–157. doi: 10.1105/tpc.5.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ruddat A., Schmidt P., Gatz C., Braslavsky S. E., Gärtner W., Schaffner K. Recombinant type A and B phytochromes from potato. Transient absorption spectroscopy. Biochemistry. 1997 Jan 7;36(1):103–111. doi: 10.1021/bi962012w. [DOI] [PubMed] [Google Scholar]
  20. Shinomura T., Nagatani A., Hanzawa H., Kubota M., Watanabe M., Furuya M. Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8129–8133. doi: 10.1073/pnas.93.15.8129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Terry M. J., Maines M. D., Lagarias J. C. Inactivation of phytochrome- and phycobiliprotein-chromophore precursors by rat liver biliverdin reductase. J Biol Chem. 1993 Dec 15;268(35):26099–26106. [PubMed] [Google Scholar]
  22. Wagner D., Quail P. H. Mutational analysis of phytochrome B identifies a small COOH-terminal-domain region critical for regulatory activity. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8596–8600. doi: 10.1073/pnas.92.19.8596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wagner D., Tepperman J. M., Quail P. H. Overexpression of Phytochrome B Induces a Short Hypocotyl Phenotype in Transgenic Arabidopsis. Plant Cell. 1991 Dec;3(12):1275–1288. doi: 10.1105/tpc.3.12.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wahleithner J. A., Li L. M., Lagarias J. C. Expression and assembly of spectrally active recombinant holophytochrome. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10387–10391. doi: 10.1073/pnas.88.23.10387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Whitelam G. C., Johnson E., Peng J., Carol P., Anderson M. L., Cowl J. S., Harberd N. P. Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell. 1993 Jul;5(7):757–768. doi: 10.1105/tpc.5.7.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yeh K. C., Wu S. H., Murphy J. T., Lagarias J. C. A cyanobacterial phytochrome two-component light sensory system. Science. 1997 Sep 5;277(5331):1505–1508. doi: 10.1126/science.277.5331.1505. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES