Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Feb;107(2):365–376. doi: 10.1104/pp.107.2.365

RML1 and RML2, Arabidopsis genes required for cell proliferation at the root tip.

J C Cheng 1, K A Seeley 1, Z R Sung 1
PMCID: PMC157136  PMID: 7724670

Abstract

New cells are produced from the meristematic tissues located at the shoot and root tip throughout the life of higher plants. To investigate the genetic mechanism regulating meristematic activity, we isolated and characterized four single-gene, recessive mutants in Arabidopsis thaliana called root meristemless (rml). Complementation tests identified two RML loci; RML1 maps to chromosome IV and RML2 maps to chromosome III. These mutants produce normal embryonic roots that either did not undergo or experienced limited cell division following germination, resulting in primary roots of less than 2.0 mm in length. Mutants can produce lateral and adventitious roots, which can grow to a length comparable to the embryonic root and arrest, indicating that the growth arrest is unrelated to the embryonic dormancy process. Neither the addition of growth regulators to the media nor the removal of shoots can rescue mutant roots from growth arrest, indicating that the mutant phenotype is not caused by a shortage of known growth regulators or by a transmissible shoot inhibitor. Normal cell division ability in mutant embryo, shoot, and callus cells indicates that the RML gene functions are not part of the general cell division processes; rather, they are involved specifically in activating the cell division cycle in the root apical cells.

Full Text

The Full Text of this article is available as a PDF (3.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benfey P. N., Linstead P. J., Roberts K., Schiefelbein J. W., Hauser M. T., Aeschbacher R. A. Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. Development. 1993 Sep;119(1):57–70. doi: 10.1242/dev.119.Supplement.57. [DOI] [PubMed] [Google Scholar]
  2. Chang C., Bowman J. L., DeJohn A. W., Lander E. S., Meyerowitz E. M. Restriction fragment length polymorphism linkage map for Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6856–6860. doi: 10.1073/pnas.85.18.6856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dolan L., Janmaat K., Willemsen V., Linstead P., Poethig S., Roberts K., Scheres B. Cellular organisation of the Arabidopsis thaliana root. Development. 1993 Sep;119(1):71–84. doi: 10.1242/dev.119.1.71. [DOI] [PubMed] [Google Scholar]
  5. Feiler H. S., Jacobs T. W. Cell division in higher plants: a cdc2 gene, its 34-kDa product, and histone H1 kinase activity in pea. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5397–5401. doi: 10.1073/pnas.87.14.5397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hemerly A. S., Ferreira P., de Almeida Engler J., Van Montagu M., Engler G., Inzé D. cdc2a expression in Arabidopsis is linked with competence for cell division. Plant Cell. 1993 Dec;5(12):1711–1723. doi: 10.1105/tpc.5.12.1711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hirt H., Mink M., Pfosser M., Bögre L., Györgyey J., Jonak C., Gartner A., Dudits D., Heberle-Bors E. Alfalfa cyclins: differential expression during the cell cycle and in plant organs. Plant Cell. 1992 Dec;4(12):1531–1538. doi: 10.1105/tpc.4.12.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hunt T. Summary: put out more flags. Cold Spring Harb Symp Quant Biol. 1991;56:757–769. doi: 10.1101/sqb.1991.056.01.085. [DOI] [PubMed] [Google Scholar]
  9. Martinez M. C., Jørgensen J. E., Lawton M. A., Lamb C. J., Doerner P. W. Spatial pattern of cdc2 expression in relation to meristem activity and cell proliferation during plant development. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7360–7364. doi: 10.1073/pnas.89.16.7360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mizoguchi T., Gotoh Y., Nishida E., Yamaguchi-Shinozaki K., Hayashida N., Iwasaki T., Kamada H., Shinozaki K. Characterization of two cDNAs that encode MAP kinase homologues in Arabidopsis thaliana and analysis of the possible role of auxin in activating such kinase activities in cultured cells. Plant J. 1994 Jan;5(1):111–122. doi: 10.1046/j.1365-313x.1994.5010111.x. [DOI] [PubMed] [Google Scholar]
  11. Murray M. G., Thompson W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980 Oct 10;8(19):4321–4325. doi: 10.1093/nar/8.19.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nam H. G., Giraudat J., Den Boer B., Moonan F., Loos WDB., Hauge B. M., Goodman H. M. Restriction Fragment Length Polymorphism Linkage Map of Arabidopsis thaliana. Plant Cell. 1989 Jul;1(7):699–705. doi: 10.1105/tpc.1.7.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Scheres B., McKhann H. I., Zalensky A., Löbler M., Bisseling T., Hirsch A. M. The PsENOD12 Gene Is Expressed at Two Different Sites in Afghanistan Pea Pseudonodules Induced by Auxin Transport Inhibitors. Plant Physiol. 1992 Dec;100(4):1649–1655. doi: 10.1104/pp.100.4.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sung Z. R., Belachew A., Shunong B., Bertrand-Garcia R. EMF, an Arabidopsis Gene Required for Vegetative Shoot Development. Science. 1992 Dec 4;258(5088):1645–1647. doi: 10.1126/science.258.5088.1645. [DOI] [PubMed] [Google Scholar]
  15. Valvekens D., Van Montagu M., Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. doi: 10.1073/pnas.85.15.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES