Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Feb;107(2):535–543. doi: 10.1104/pp.107.2.535

The Lipoxygenase Isozymes in Soybean [Glycine max (L.) Merr.] Leaves (Changes during Leaf Development, after Wounding, and following Reproductive Sink Removal).

D M Saravitz 1, J N Siedow 1
PMCID: PMC157157  PMID: 12228381

Abstract

The levels of individual lipoxygenase isozymes in soybean [Glycine max (L.) Merr.] leaves were assessed during leaf development, after mechanical wounding, and in response to reproductive sink removal. Native isoelectric focusing followed by immunoblotting was employed to examine individual lipoxygenase isozymes. In leaves of all ages, two distinct classes of lipoxygenase isozymes were detected. One class of lipoxygenase isozymes had nearly neutral isoelectric points (pls) ranging from pH 6.8 to 7.2. The other class of lipoxygenase isozymes had acidic pls ranging from pH 4.7 to 5.6. During leaf development, all of the neutral lipoxygenase isozymes and most of the acidic isozymes were present in greatest abundance in the youngest leaves examined and declined in amount as leaf age increased. However, four acidic lipoxygenase isozymes (pl = 4.70, 4.80, 4.90, 4.95) were more abundant in intermediateage leaves than in either the youngest or oldest leaves examined. Following mechanical wounding of leaves, these same four acidic isozymes also increased in abundance both locally and systemically in leaves from wounded plants. Unlike the specific effects of wounding on the lipoxygenase isozymes in leaves, reproductive sink removal stimulated a general increase in most of the acidic lipoxygenase isozymes in leaves.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell E., Mullet J. E. Characterization of an Arabidopsis lipoxygenase gene responsive to methyl jasmonate and wounding. Plant Physiol. 1993 Dec;103(4):1133–1137. doi: 10.1104/pp.103.4.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bell E., Mullet J. E. Lipoxygenase gene expression is modulated in plants by water deficit, wounding, and methyl jasmonate. Mol Gen Genet. 1991 Dec;230(3):456–462. doi: 10.1007/BF00280303. [DOI] [PubMed] [Google Scholar]
  3. Christopher J. P., Pistorius E. K., Axelrod B. Isolation of a third isoenzyme of soybean lipoxygenase. Biochim Biophys Acta. 1972 Sep 19;284(1):54–62. doi: 10.1016/0005-2744(72)90045-9. [DOI] [PubMed] [Google Scholar]
  4. Croft KPC., Juttner F., Slusarenko A. J. Volatile Products of the Lipoxygenase Pathway Evolved from Phaseolus vulgaris (L.) Leaves Inoculated with Pseudomonas syringae pv phaseolicola. Plant Physiol. 1993 Jan;101(1):13–24. doi: 10.1104/pp.101.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Farmer E. E., Ryan C. A. Octadecanoid Precursors of Jasmonic Acid Activate the Synthesis of Wound-Inducible Proteinase Inhibitors. Plant Cell. 1992 Feb;4(2):129–134. doi: 10.1105/tpc.4.2.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Franceschi V. R., Wittenbach V. A., Giaquinta R. T. Paraveinal Mesophyll of Soybean Leaves in Relation to Assimilate Transfer and Compartmentation : III. Immunohistochemical Localization of Specific Glycopeptides in the Vacuole after Depodding. Plant Physiol. 1983 Jun;72(2):586–589. doi: 10.1104/pp.72.2.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grayburn W. S., Schneider G. R., Hamilton-Kemp T. R., Bookjans G., Ali K., Hildebrand D. F. Soybean leaves contain multiple lipoxygenases. Plant Physiol. 1991 Apr;95(4):1214–1218. doi: 10.1104/pp.95.4.1214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grimes H. D., Koetje D. S., Franceschi V. R. Expression, activity, and cellular accumulation of methyl jasmonate-responsive lipoxygenase in soybean seedlings. Plant Physiol. 1992 Sep;100(1):433–443. doi: 10.1104/pp.100.1.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grimes H. D., Tranbarger T. J., Franceschi V. R. Expression and Accumulation Patterns of Nitrogen-Responsive Lipoxygenase in Soybeans. Plant Physiol. 1993 Oct;103(2):457–466. doi: 10.1104/pp.103.2.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gundlach H., Müller M. J., Kutchan T. M., Zenk M. H. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2389–2393. doi: 10.1073/pnas.89.6.2389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kauss H., Krause K., Jeblick W. Methyl jasmonate conditions parsley suspension cells for increased elicitation of phenylpropanoid defense responses. Biochem Biophys Res Commun. 1992 Nov 30;189(1):304–308. doi: 10.1016/0006-291x(92)91558-8. [DOI] [PubMed] [Google Scholar]
  12. Koch E., Meier B. M., Eiben H. G., Slusarenko A. A Lipoxygenase from Leaves of Tomato (Lycopersicon esculentum Mill.) Is Induced in Response to Plant Pathogenic Pseudomonads. Plant Physiol. 1992 Jun;99(2):571–576. doi: 10.1104/pp.99.2.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Koda Y. The role of jasmonic acid and related compounds in the regulation of plant development. Int Rev Cytol. 1992;135:155–199. doi: 10.1016/s0074-7696(08)62040-9. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  15. Melan M. A., Dong X., Endara M. E., Davis K. R., Ausubel F. M., Peterman T. K. An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol. 1993 Feb;101(2):441–450. doi: 10.1104/pp.101.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ohta H., Shida K., Peng Y. L., Furusawa I., Shishiyama J., Aibara S., Morita Y. A Lipoxygenase Pathway Is Activated in Rice after Infection with the Rice Blast Fungus Magnaporthe grisea. Plant Physiol. 1991 Sep;97(1):94–98. doi: 10.1104/pp.97.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Peterman T. K., Siedow J. N. Behavior of Lipoxygenase during Establishment, Senescence, and Rejuvenation of Soybean Cotyledons. Plant Physiol. 1985 Aug;78(4):690–695. doi: 10.1104/pp.78.4.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Robertson E. F., Dannelly H. K., Malloy P. J., Reeves H. C. Rapid isoelectric focusing in a vertical polyacrylamide minigel system. Anal Biochem. 1987 Dec;167(2):290–294. doi: 10.1016/0003-2697(87)90166-7. [DOI] [PubMed] [Google Scholar]
  19. Ryan C. A. The search for the proteinase inhibitor-inducing factor, PIIF. Plant Mol Biol. 1992 May;19(1):123–133. doi: 10.1007/BF00015610. [DOI] [PubMed] [Google Scholar]
  20. Setter T. L., Brun W. A., Brenner M. L. Effect of obstructed translocation on leaf abscisic Acid, and associated stomatal closure and photosynthesis decline. Plant Physiol. 1980 Jun;65(6):1111–1115. doi: 10.1104/pp.65.6.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Todd J. F., Paliyath G., Thompson J. E. Characteristics of a membrane-associated lipoxygenase in tomato fruit. Plant Physiol. 1990 Nov;94(3):1225–1232. doi: 10.1104/pp.94.3.1225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tranbarger T. J., Franceschi V. R., Hildebrand D. F., Grimes H. D. The soybean 94-kilodalton vegetative storage protein is a lipoxygenase that is localized in paraveinal mesophyll cell vacuoles. Plant Cell. 1991 Sep;3(9):973–987. doi: 10.1105/tpc.3.9.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Verhue W. M., Francke A. The heterogeneity of soyabean lipoxygenase. Biochim Biophys Acta. 1972 Sep 19;284(1):43–53. doi: 10.1016/0005-2744(72)90044-7. [DOI] [PubMed] [Google Scholar]
  24. Wittenbach V. A. Purification and characterization of a soybean leaf storage glycoprotein. Plant Physiol. 1983 Sep;73(1):125–129. doi: 10.1104/pp.73.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yamamoto S. Mammalian lipoxygenases: molecular structures and functions. Biochim Biophys Acta. 1992 Oct 30;1128(2-3):117–131. doi: 10.1016/0005-2760(92)90297-9. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES