Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Feb;107(2):545–552. doi: 10.1104/pp.107.2.545

Partial Purification and Characterization of Hydroxycinnamoyl-Coenzyme A:Tyramine Hydroxycinnamoyltransferase from Cell Suspension Cultures of Solanum tuberosum.

H Hohlfeld 1, W Schurmann 1, D Scheel 1, D Strack 1
PMCID: PMC157158  PMID: 12228382

Abstract

A pathogen elicitor-inducible soluble acyltransferase (tyramine hydroxycinnamoyltransferase [THT], EC 2.3.1), which catalyzes the transfer of hydroxycinnamic acids from hydroxycinnamoyl-coenzyme A (CoA) esters to tyramine in the formation of N-hydroxycinnamoyltyramine, was partially purified with a 380-fold enrichment and a 6% recovery from cell-suspension cultures of potato (Solanum tuberosum L. cv Datura). The enzyme showed specific activities of 33 mkat (kg protein)-1 (formation of feruloyltyramine). The apparent native Mr was found to be approximately 49,000. Highest activity was at pH 6.8 in K-phosphate. The isoelectric point of the enzyme was approximately pH5.2. The apparent energy of activation was calculated to be 96 kJ mol-1. The enzyme activity was stimulated more than 5-fold by 10 mM Ca2+ or Mg2+. The apparent Km values were 36 [mu]M for feruloyl-CoA and 85 and 140 [mu]M for cinnamoyl- and 4-coumaroyl-CoA, respectively. The Km value for tyramine in the presence of feruloyl-CoA was 22 [mu]M. In the presence of 4-coumaroyl-CoA, however, the Km for tyramine increased to about 230 [mu]M. The mode of action was an iso-ordered bi bi mechanism in which A, B, P, and Q equal hydroxycinnamoyl-CoA, tyramine, N-hydroxycinnamoyltyramine, and CoA, respectively. Thus, the reaction occurred in a ternary complex of the enzyme and substrates. The equilibrium constant of the reaction was determined to be 1.3 x 104. This gave a [delta]G[deg][prime] eq value of -23.5 kJ mol-1.

Full Text

The Full Text of this article is available as a PDF (681.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Graham M. Y., Graham T. L. Rapid Accumulation of Anionic Peroxidases and Phenolic Polymers in Soybean Cotyledon Tissues following Treatment with Phytophthora megasperma f. sp. Glycinea Wall Glucan. Plant Physiol. 1991 Dec;97(4):1445–1455. doi: 10.1104/pp.97.4.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hanes C. S. Studies on plant amylases: The effect of starch concentration upon the velocity of hydrolysis by the amylase of germinated barley. Biochem J. 1932;26(5):1406–1421. doi: 10.1042/bj0261406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hrazdina G., Kreuzaler F., Hahlbrock K., Grisebach H. Substrate specificity of flavanone synthase from cell suspension cultures of parsley and structure of release products in vitro. Arch Biochem Biophys. 1976 Aug;175(2):392–399. doi: 10.1016/0003-9861(76)90526-9. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES