Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Feb;107(2):621–630. doi: 10.1104/pp.107.2.621

Near-isogenic lines of maize differing for glycinebetaine.

W J Yang 1, A Nadolska-Orczyk 1, K V Wood 1, D T Hahn 1, P J Rich 1, A J Wood 1, H Saneoka 1, G S Premachandra 1, C C Bonham 1, J C Rhodes 1, et al.
PMCID: PMC157166  PMID: 7724675

Abstract

A series of near-isogenic glycinebetaine-containing and -deficient F8 pairs of Zea mays L. (maize) lines were developed. The pairs of lines differ for alternative alleles of a single locus; the wild-type allele conferring glycinebetaine accumulation is designated Bet1 and the mutant (recessive) allele is designated bet1. The near-isogenic lines were used to investigate whether glycinebetaine deficiency affects the pool size of the glycinebetaine precursor, choline, using a new method for glycinebetaine and choline determination: stable isotope dilution plasma desorption mass spectrometry. Glycinebetaine deficiency in maize was associated with a significant expansion of the free choline pool, but the difference in choline pool size was not equal to the difference in glycinebetaine pool size, suggesting that choline must down-regulate its own synthesis. Consistent with this, glycinebetaine deficiency was also associated with the accumulation of the choline precursor, serine. A randomly amplified polymorphic DNA marker was identified that detects the bet1 allele. In 62 F8 families tested the 10-mer primer 5'-GTCCTCGTAG produced a 1.2-kb polymerase chain reaction product only when DNA from Bet1/bet1 or bet1/bet1 lines was used as template. All 26 homozygous Bet1/Bet1 F8 families tested were null for this marker.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernatzky R., Tanksley S. D. Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics. 1986 Apr;112(4):887–898. doi: 10.1093/genetics/112.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burr B., Burr F. A. Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations. Trends Genet. 1991 Feb;7(2):55–60. doi: 10.1016/0168-9525(91)90232-F. [DOI] [PubMed] [Google Scholar]
  3. Csonka L. N., Hanson A. D. Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol. 1991;45:569–606. doi: 10.1146/annurev.mi.45.100191.003033. [DOI] [PubMed] [Google Scholar]
  4. Garcia-Perez A., Burg M. B. Renal medullary organic osmolytes. Physiol Rev. 1991 Oct;71(4):1081–1115. doi: 10.1152/physrev.1991.71.4.1081. [DOI] [PubMed] [Google Scholar]
  5. Hanson A. D., Rathinasabapathi B., Chamberlin B., Gage D. A. Comparative Physiological Evidence that beta-Alanine Betaine and Choline-O-Sulfate Act as Compatible Osmolytes in Halophytic Limonium Species. Plant Physiol. 1991 Nov;97(3):1199–1205. doi: 10.1104/pp.97.3.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lerma C., Hanson A. D., Rhodes D. Oxygen-18 and deuterium labeling studies of choline oxidation by spinach and sugar beet. Plant Physiol. 1988 Nov;88(3):695–702. doi: 10.1104/pp.88.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lerma C., Rich P. J., Ju G. C., Yang W. J., Hanson A. D., Rhodes D. Betaine deficiency in maize : complementation tests and metabolic basis. Plant Physiol. 1991 Apr;95(4):1113–1119. doi: 10.1104/pp.95.4.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mudd S. H., Datko A. H. Synthesis of methylated ethanolamine moieties: regulation by choline in lemna. Plant Physiol. 1989 May;90(1):296–305. doi: 10.1104/pp.90.1.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rhodes D., Rich P. J., Brunk D. G., Ju G. C., Rhodes J. C., Pauly M. H., Hansen L. A. Development of two isogenic sweet corn hybrids differing for glycinebetaine content. Plant Physiol. 1989 Nov;91(3):1112–1121. doi: 10.1104/pp.91.3.1112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rhodes D., Rich P. J., Myers A. C., Reuter C. C., Jamieson G. C. Determination of Betaines by Fast Atom Bombardment Mass Spectrometry : Identification of Glycine Betaine Deficient Genotypes of Zea mays. Plant Physiol. 1987 Jul;84(3):781–788. doi: 10.1104/pp.84.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Saneoka H., Nagasaka C., Hahn D. T., Yang W. J., Premachandra G. S., Joly R. J., Rhodes D. Salt Tolerance of Glycinebetaine-Deficient and -Containing Maize Lines. Plant Physiol. 1995 Feb;107(2):631–638. doi: 10.1104/pp.107.2.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Williams J. G., Hanafey M. K., Rafalski J. A., Tingey S. V. Genetic analysis using random amplified polymorphic DNA markers. Methods Enzymol. 1993;218:704–740. doi: 10.1016/0076-6879(93)18053-f. [DOI] [PubMed] [Google Scholar]
  13. Wittwer C. T., Garling D. J. Rapid cycle DNA amplification: time and temperature optimization. Biotechniques. 1991 Jan;10(1):76–83. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES