Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Mar;107(3):725–735. doi: 10.1104/pp.107.3.725

Effects of Iron Excess on Nicotiana plumbaginifolia Plants (Implications to Oxidative Stress).

K Kampfenkel 1, M Van Montagu 1, D Inze 1
PMCID: PMC157188  PMID: 12228397

Abstract

Fe excess is believed to generate oxidative stress. To contribute to the understanding of Fe metabolism, Fe excess was induced in Nicotiana plumbaginifolia grown in hydroponic culture upon root cutting. Toxicity symptoms leading to brown spots covering the leaf surface became visible after 6 h. Photosynthesis was greatly affected within 12 h; the photosynthetic rate was decreased by 40%. Inhibition of photosynthesis was accompanied by photoinhibition, increased reduction of photosystem II, and higher thylakoid energization. Fe excess seemed to stimulate photorespiration because catalase activity doubled. To cope with cellular damage, respiration rate increased and cytosolic glucose-6-phosphate dehydrogenase activity more than doubled. Simultaneously, the content of free hexoses was reduced. Indicative of generation of oxidative stress was doubling of ascorbate peroxidase activity within 12 h. Contents of the antioxidants ascorbate and glutathione were reduced by 30%, resulting in equivalent increases of dehydroascorbate and oxidized glutathione. Taken together, moderate changes in leaf Fe content have a dramatic effect on plant metabolism. This indicates that cellular Fe concentrations must be finely regulated to avoid cellular damage most probably because of oxidative stress induced by Fe.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276–287. doi: 10.1016/0003-2697(71)90370-8. [DOI] [PubMed] [Google Scholar]
  3. Beyer W. F., Jr, Fridovich I. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem. 1987 Mar;161(2):559–566. doi: 10.1016/0003-2697(87)90489-1. [DOI] [PubMed] [Google Scholar]
  4. Bowler C., Alliotte T., De Loose M., Van Montagu M., Inzé D. The induction of manganese superoxide dismutase in response to stress in Nicotiana plumbaginifolia. EMBO J. 1989 Jan;8(1):31–38. doi: 10.1002/j.1460-2075.1989.tb03345.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cakmak I., Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol. 1992 Apr;98(4):1222–1227. doi: 10.1104/pp.98.4.1222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dancis A., Roman D. G., Anderson G. J., Hinnebusch A. G., Klausner R. D. Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3869–3873. doi: 10.1073/pnas.89.9.3869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fee J. A. Regulation of sod genes in Escherichia coli: relevance to superoxide dismutase function. Mol Microbiol. 1991 Nov;5(11):2599–2610. doi: 10.1111/j.1365-2958.1991.tb01968.x. [DOI] [PubMed] [Google Scholar]
  8. Foyer C. H., Lescure J. C., Lefebvre C., Morot-Gaudry J. F., Vincentz M., Vaucheret H. Adaptations of Photosynthetic Electron Transport, Carbon Assimilation, and Carbon Partitioning in Transgenic Nicotiana plumbaginifolia Plants to Changes in Nitrate Reductase Activity. Plant Physiol. 1994 Jan;104(1):171–178. doi: 10.1104/pp.104.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Foyer C., Lelandais M., Galap C., Kunert K. J. Effects of Elevated Cytosolic Glutathione Reductase Activity on the Cellular Glutathione Pool and Photosynthesis in Leaves under Normal and Stress Conditions. Plant Physiol. 1991 Nov;97(3):863–872. doi: 10.1104/pp.97.3.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Giannopolitis C. N., Ries S. K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 1977 Feb;59(2):309–314. doi: 10.1104/pp.59.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Graeve K., von Schaewen A., Scheibe R. Purification, characterization, and cDNA sequence of glucose-6-phosphate dehydrogenase from potato (Solanum tuberosum L.). Plant J. 1994 Mar;5(3):353–361. doi: 10.1111/j.1365-313x.1994.00353.x. [DOI] [PubMed] [Google Scholar]
  12. Griffith O. W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 1980 Jul 15;106(1):207–212. doi: 10.1016/0003-2697(80)90139-6. [DOI] [PubMed] [Google Scholar]
  13. Jungmann J., Reins H. A., Lee J., Romeo A., Hassett R., Kosman D., Jentsch S. MAC1, a nuclear regulatory protein related to Cu-dependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast. EMBO J. 1993 Dec 15;12(13):5051–5056. doi: 10.1002/j.1460-2075.1993.tb06198.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kampfenkel K. Limited proteolysis of NADP-malate dehydrogenase from pea chloroplast by aminopeptidase K yields monomers. Evidence of proteolytic degradation of NADP-malate dehydrogenase during purification from pea. Biochim Biophys Acta. 1992 Dec 8;1156(1):71–77. doi: 10.1016/0304-4165(92)90098-f. [DOI] [PubMed] [Google Scholar]
  15. Kneen B. E., Larue T. A., Welch R. M., Weeden N. F. Pleiotropic Effects of brz: A Mutation in Pisum sativum (L.) cv ;Sparkle' Conditioning Decreased Nodulation and Increased Iron Uptake and Leaf Necrosis. Plant Physiol. 1990 Jun;93(2):717–722. doi: 10.1104/pp.93.2.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Okamura M. An improved method for determination of L-ascorbic acid and L-dehydroascorbic acid in blood plasma. Clin Chim Acta. 1980 May 9;103(3):259–268. doi: 10.1016/0009-8981(80)90144-8. [DOI] [PubMed] [Google Scholar]
  17. Raguzzi F., Lesuisse E., Crichton R. R. Iron storage in Saccharomyces cerevisiae. FEBS Lett. 1988 Apr 11;231(1):253–258. doi: 10.1016/0014-5793(88)80742-7. [DOI] [PubMed] [Google Scholar]
  18. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  19. Sonnewald U., Brauer M., von Schaewen A., Stitt M., Willmitzer L. Transgenic tobacco plants expressing yeast-derived invertase in either the cytosol, vacuole or apoplast: a powerful tool for studying sucrose metabolism and sink/source interactions. Plant J. 1991 Jul;1(1):95–106. doi: 10.1111/j.1365-313x.1991.00095.x. [DOI] [PubMed] [Google Scholar]
  20. Tsang E. W., Bowler C., Hérouart D., Van Camp W., Villarroel R., Genetello C., Van Montagu M., Inzé D. Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell. 1991 Aug;3(8):783–792. doi: 10.1105/tpc.3.8.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Welch R. M., Larue T. A. Physiological Characteristics of Fe Accumulation in the ;Bronze' Mutant of Pisum sativum L., cv ;Sparkle' E107 (brz brz). Plant Physiol. 1990 Jun;93(2):723–729. doi: 10.1104/pp.93.2.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Willekens H., Langebartels C., Tiré C., Van Montagu M., Inzé D., Van Camp W. Differential expression of catalase genes in Nicotiana plumbaginifolia (L.). Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10450–10454. doi: 10.1073/pnas.91.22.10450. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES