Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Mar;107(3):737–750. doi: 10.1104/pp.107.3.737

Factors Affecting the Enhancement of Oxidative Stress Tolerance in Transgenic Tobacco Overexpressing Manganese Superoxide Dismutase in the Chloroplasts.

L Slooten 1, K Capiau 1, W Van Camp 1, M Van Montagu 1, C Sybesma 1, D Inze 1
PMCID: PMC157189  PMID: 12228398

Abstract

Two varieties of tobacco (Nicotiana tabacum var PBD6 and var SR1) were used to generate transgenic lines overexpressing Mn-superoxide dismutase (MnSOD) in the chloroplasts. The overexpressed MnSOD suppresses the activity of those SODs (endogenous MnSOD and chloroplastic and cytosolic Cu/ZnSOD) that are prominent in young leaves but disappear largely or completely during aging of the leaves. The transgenic and control plants were grown at different light intensities and were then assayed for oxygen radical stress tolerance in leaf disc assays and for abundance of antioxidant enzymes and substrates in leaves. Transgenic plants had an enhanced resistance to methylviologen (MV), compared with control plants, only after growth at high light intensities. In both varieties the activities of FeSOD, ascorbate peroxidase, dehydroascorbate reductase, and monodehydroascorbate reductase and the concentrations of glutathione and ascorbate (all expressed on a chlorophyll basis) increased with increasing light intensity during growth. Most of these components were correlated with MV tolerance. It is argued that SOD overexpression leads to enhancement of the tolerance to MV-dependent oxidative stress only if one or more of these components is also present at high levels. Furthermore, the results suggest that in var SR1 the overexpressed MnSOD enhances primarily the stromal antioxidant system.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barber J., Andersson B. Too much of a good thing: light can be bad for photosynthesis. Trends Biochem Sci. 1992 Feb;17(2):61–66. doi: 10.1016/0968-0004(92)90503-2. [DOI] [PubMed] [Google Scholar]
  2. Beauchamp C. O., Fridovich I. Isozymes of superoxide dismutase from wheat germ. Biochim Biophys Acta. 1973 Jul 12;317(1):50–64. doi: 10.1016/0005-2795(73)90198-0. [DOI] [PubMed] [Google Scholar]
  3. Bowler C., Slooten L., Vandenbranden S., De Rycke R., Botterman J., Sybesma C., Van Montagu M., Inzé D. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J. 1991 Jul;10(7):1723–1732. doi: 10.1002/j.1460-2075.1991.tb07696.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Elstner E., Konze J. R. Light-dependent ethylene production by isolated chloroplasts. FEBS Lett. 1974 Sep 1;45(1):18–21. doi: 10.1016/0014-5793(74)80800-8. [DOI] [PubMed] [Google Scholar]
  5. Geller B. L., Winge D. R. Subcellular distribution of superoxide dismutases in rat liver. Methods Enzymol. 1984;105:105–114. doi: 10.1016/s0076-6879(84)05014-x. [DOI] [PubMed] [Google Scholar]
  6. Griffith O. W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 1980 Jul 15;106(1):207–212. doi: 10.1016/0003-2697(80)90139-6. [DOI] [PubMed] [Google Scholar]
  7. Gupta A. S., Heinen J. L., Holaday A. S., Burke J. J., Allen R. D. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1629–1633. doi: 10.1073/pnas.90.4.1629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gupta A. S., Webb R. P., Holaday A. S., Allen R. D. Overexpression of Superoxide Dismutase Protects Plants from Oxidative Stress (Induction of Ascorbate Peroxidase in Superoxide Dismutase-Overexpressing Plants). Plant Physiol. 1993 Dec;103(4):1067–1073. doi: 10.1104/pp.103.4.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jansen M. A., Shaaltiel Y., Kazzes D., Canaani O., Malkin S., Gressel J. Increased Tolerance to Photoinhibitory Light in Paraquat-Resistant Conyza bonariensis Measured by Photoacoustic Spectroscopy and CO(2)-Fixation. Plant Physiol. 1989 Nov;91(3):1174–1178. doi: 10.1104/pp.91.3.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Marsho T. V., Behrens P. W. Photosynthetic oxygen reduction in isolated intact chloroplasts and cells in spinach. Plant Physiol. 1979 Oct;64(4):656–659. doi: 10.1104/pp.64.4.656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McKersie B. D., Chen Y., de Beus M., Bowley S. R., Bowler C., Inzé D., D'Halluin K., Botterman J. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol. 1993 Dec;103(4):1155–1163. doi: 10.1104/pp.103.4.1155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Okamura M. An improved method for determination of L-ascorbic acid and L-dehydroascorbic acid in blood plasma. Clin Chim Acta. 1980 May 9;103(3):259–268. doi: 10.1016/0009-8981(80)90144-8. [DOI] [PubMed] [Google Scholar]
  13. Pitcher L. H., Brennan E., Hurley A., Dunsmuir P., Tepperman J. M., Zilinskas B. A. Overproduction of petunia chloroplastic copper/zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco. Plant Physiol. 1991 Sep;97(1):452–455. doi: 10.1104/pp.97.1.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Polle A., Chakrabarti K., Schürmann W., Renneberg H. Composition and Properties of Hydrogen Peroxide Decomposing Systems in Extracellular and Total Extracts from Needles of Norway Spruce (Picea abies L., Karst.). Plant Physiol. 1990 Sep;94(1):312–319. doi: 10.1104/pp.94.1.312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schaedle M. Chloroplast glutathione reductase. Plant Physiol. 1977 May;59(5):1011–1012. doi: 10.1104/pp.59.5.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tepperman J. M., Dunsmuir P. Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity. Plant Mol Biol. 1990 Apr;14(4):501–511. doi: 10.1007/BF00027496. [DOI] [PubMed] [Google Scholar]
  17. Tsang E. W., Bowler C., Hérouart D., Van Camp W., Villarroel R., Genetello C., Van Montagu M., Inzé D. Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell. 1991 Aug;3(8):783–792. doi: 10.1105/tpc.3.8.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Vass I., Styring S., Hundal T., Koivuniemi A., Aro E., Andersson B. Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1408–1412. doi: 10.1073/pnas.89.4.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES