Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Mar;107(3):775–782. doi: 10.1104/pp.107.3.775

In Vivo Regulation of Wheat-Leaf Phosphoenolpyruvate Carboxylase by Reversible Phosphorylation.

SMG Duff 1, R Chollet 1
PMCID: PMC157193  PMID: 12228402

Abstract

Regulation of C3 phosphoenolpyruvate carboxylase (PEPC) and its protein-serine/threonine kinase (PEPC-PK) was studied in wheat (Triticum aestivum) leaves that were excised from low-N-grown seedlings and subsequently illuminated and/or supplied with 40 mM KNO3. The apparent phosphorylation status of PEPC was assessed by its sensitivity to L-malate inhibition at suboptimal assay conditions, and the activity state of PEPC-PK was determined by the in vitro 32P labeling of purified maize dephospho-PEPC by [[gamma]-32P]ATP/Mg. Illumination ([plus or minus]NO3-) for 1 h led to about a 4.5-fold increase in the 50% inhibition constant for L-malate, which was reversed by placing the illuminated detached leaves in darkness (minus NO3-). A 1 -h exposure of excised leaves to light, KNO3, or both resulted in relative PEPC-PK activities of 205, 119, and 659%, respectively, of the dark/0 mM KNO3 control tissue. In contrast, almost no activity was observed when a recombinant sorghum phosphorylation-site mutant (S8D) form of PEPC was used as protein substrate in PEPC-PK assays of the light plus KNO3 leaf extracts. In vivo labeling of wheat-leaf PEPC by feeding 32P-labeled orthophosphate showed that PEPC from light plus KNO3 tissue was substantially more phosphorylated than the enzyme in the dark minus-nitrate immunoprecipitates. Immunoblot analysis indicated that no changes in relative PEPC-protein amount occurred within 1 h for any of the treatments. Thus, C3 PEPC activity in these detached wheat leaves appears to be regulated by phosphorylation of a serine residue near the protein's N terminus by a Ca2+ -independent protein kinase in response to a complex interaction in vivo between light and N.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Duff S. M., Plaxton W. C., Lefebvre D. D. Phosphate-starvation response in plant cells: de novo synthesis and degradation of acid phosphatases. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9538–9542. doi: 10.1073/pnas.88.21.9538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Huber J. L., Huber S. C., Campbell W. H., Redinbaugh M. G. Reversible light/dark modulation of spinach leaf nitrate reductase activity involves protein phosphorylation. Arch Biochem Biophys. 1992 Jul;296(1):58–65. doi: 10.1016/0003-9861(92)90544-7. [DOI] [PubMed] [Google Scholar]
  3. Huber S. C., Huber J. L., Campbell W. H., Redinbaugh M. G. Comparative studies of the light modulation of nitrate reductase and sucrose-phosphate synthase activities in spinach leaves. Plant Physiol. 1992 Oct;100(2):706–712. doi: 10.1104/pp.100.2.706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Jiao J. A., Chollet R. Light activation of maize phosphoenolpyruvate carboxylase protein-serine kinase activity is inhibited by mesophyll and bundle sheath-directed photosynthesis inhibitors. Plant Physiol. 1992 Jan;98(1):152–156. doi: 10.1104/pp.98.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jiao J. A., Chollet R. Posttranslational regulation of phosphoenolpyruvate carboxylase in c(4) and crassulacean Acid metabolism plants. Plant Physiol. 1991 Apr;95(4):981–985. doi: 10.1104/pp.95.4.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jiao J., Echevarría C., Vidal J., Chollet R. Protein turnover as a component in the light/dark regulation of phosphoenolpyruvate carboxylase protein-serine kinase activity in C4 plants. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2712–2715. doi: 10.1073/pnas.88.7.2712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Job D., Cochet C., Dhien A., Chambaz E. M. A rapid method for screening inhibitor effects: determination of I50 and its standard deviation. Anal Biochem. 1978 Jan;84(1):68–77. doi: 10.1016/0003-2697(78)90484-0. [DOI] [PubMed] [Google Scholar]
  8. Le Van Quy, Champigny M. L. NO(3) Enhances the Kinase Activity for Phosphorylation of Phosphoenolpyruvate Carboxylase and Sucrose Phosphate Synthase Proteins in Wheat Leaves: Evidence from the Effects of Mannose and Okadaic Acid. Plant Physiol. 1992 May;99(1):344–347. doi: 10.1104/pp.99.1.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Li B., Chollet R. Resolution and identification of C4 phosphoenolpyruvate-carboxylase protein-kinase polypeptides and their reversible light activation in maize leaves. Arch Biochem Biophys. 1993 Dec;307(2):416–419. doi: 10.1006/abbi.1993.1609. [DOI] [PubMed] [Google Scholar]
  10. Li B., Chollet R. Salt induction and the partial purification/characterization of phosphoenolpyruvate carboxylase protein-serine kinase from an inducible crassulacean-acid-metabolism (CAM) plant, Mesembryanthemum crystallinum L. Arch Biochem Biophys. 1994 Oct;314(1):247–254. doi: 10.1006/abbi.1994.1437. [DOI] [PubMed] [Google Scholar]
  11. Lin M., Turpin D. H., Plaxton W. C. Pyruvate kinase isozymes from the green alga, Selenastrum minutum. I. Purification and physical and immunological characterization. Arch Biochem Biophys. 1989 Feb 15;269(1):219–227. doi: 10.1016/0003-9861(89)90103-3. [DOI] [PubMed] [Google Scholar]
  12. Pacquit V., Santi S., Cretin C., Bui V. L., Vidal J., Gadal P. Production and properties of recombinant C3-type phosphoenolpyruvate carboxylase from Sorghum vulgare: in vitro phosphorylation by leaf and root PyrPC protein serine kinases. Biochem Biophys Res Commun. 1993 Dec 30;197(3):1415–1423. doi: 10.1006/bbrc.1993.2635. [DOI] [PubMed] [Google Scholar]
  13. Pham C. T., Koo J. Y. Plasma levels of 8-methoxypsoralen after topical paint PUVA. J Am Acad Dermatol. 1993 Mar;28(3):460–466. doi: 10.1016/0190-9622(93)70068-5. [DOI] [PubMed] [Google Scholar]
  14. Robinson J. M. Spinach Leaf Chloroplast CO(2) and NO(2) Photoassimilations Do Not Compete for Photogenerated Reductant: Manipulation of Reductant Levels by Quantum Flux Density Titrations. Plant Physiol. 1988 Dec;88(4):1373–1380. doi: 10.1104/pp.88.4.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schuller K. A., Plaxton W. C., Turpin D. H. Regulation of Phosphoenolpyruvate Carboxylase from the Green Alga Selenastrum minutum: Properties Associated with Replenishment of Tricarboxylic Acid Cycle Intermediates during Ammonium Assimilation. Plant Physiol. 1990 Aug;93(4):1303–1311. doi: 10.1104/pp.93.4.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schuller K. A., Turpin D. H., Plaxton W. C. Metabolite regulation of partially purified soybean nodule phosphoenolpyruvate carboxylase. Plant Physiol. 1990 Nov;94(3):1429–1435. doi: 10.1104/pp.94.3.1429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schuller K. A., Werner D. Phosphorylation of Soybean (Glycine max L.) Nodule Phosphoenolpyruvate Carboxylase in Vitro Decreases Sensitivity to Inhibition by L-Malate. Plant Physiol. 1993 Apr;101(4):1267–1273. doi: 10.1104/pp.101.4.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sicher R. C., Kremer D. F. Changes of Sucrose-Phosphate Synthase Activity in Barley Primary Leaves during Light/Dark Transitions. Plant Physiol. 1984 Dec;76(4):910–912. doi: 10.1104/pp.76.4.910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sugiharto B., Suzuki I., Burnell J. N., Sugiyama T. Glutamine Induces the N-Dependent Accumulation of mRNAs Encoding Phosphoenolpyruvate Carboxylase and Carbonic Anhydrase in Detached Maize Leaf Tissue. Plant Physiol. 1992 Dec;100(4):2066–2070. doi: 10.1104/pp.100.4.2066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Vanlerberghe G. C., Schuller K. A., Smith R. G., Feil R., Plaxton W. C., Turpin D. H. Relationship between NH(4) Assimilation Rate and in Vivo Phosphoenolpyruvate Carboxylase Activity : Regulation of Anaplerotic Carbon Flow in the Green Alga Selenastrum minutum. Plant Physiol. 1990 Sep;94(1):284–290. doi: 10.1104/pp.94.1.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wang Y. H., Duff S. M., Lepiniec L., Crétin C., Sarath G., Condon S. A., Vidal J., Gadal P., Chollet R. Site-directed mutagenesis of the phosphorylatable serine (Ser8) in C4 phosphoenolpyruvate carboxylase from sorghum. The effect of negative charge at position 8. J Biol Chem. 1992 Aug 25;267(24):16759–16762. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES