Abstract
When [3H]inositol-labeled carrot (Daucus carota L.) cells were treated with 10 or 25 microM wasp venom peptide mastoparan or the active analog Mas-7 there was a rapid loss of more than 70% of [3H]phosphatidylinositol-4-monophosphate (PIP) and [3H]phosphatidylinositol-4,5-bisphosphate (PIP2) and a 3- and 4-fold increase in [3H]inositol-1,4-P2 and [3H]inositol-1,4,5-P3, respectively. The identity of [3H]inositol-1,4,5-P3 was confirmed by phosphorylation with inositol-1,4,5-P3 3-kinase and co-migration with inositol-1,3,4,5-P4. The changes in phosphoinositides were evident within 1 min. The loss of [3H]PIP was evident only when cells were treated with the higher concentrations (10 and 25 microM) of mastoparan or Mas-7. At 1 microM Mas-7, [3H]PIP increased. The inactive mastoparan analog Mas-17 had little or no effect on [3H]PIP or [3H]PIP2 hydrolysis in vivo. Neomycin (100 microM) inhibited the uptake of Mas-7 and thereby inhibited the Mas-7-stimulated hydrolysis of [3H]PIP and [3H]PIP2. Plasma membranes isolated from mastoparan-treated cells had increased PIP-phospholipase C (PLC) activity. However, when Mas-7 was added to isolated plasma membranes from control cells, it had no effect on PIP-PLC activity at low concentrations and inhibited PIP-PLC at concentrations greater than 10 microM. In addition, guanosine-5'-O-(3-thiotriphosphate) had no effect on the PIP-PLC activity when added to plasma membranes isolated from either the Mas-7-treated or control cells. The fact that Mas-7 did not stimulate PIP-PLC activity in vitro indicated that the Mas-7-induced increase in PIP-PLC in vivo required a factor that was lost from the membrane during isolation.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aderem A. Signal transduction and the actin cytoskeleton: the roles of MARCKS and profilin. Trends Biochem Sci. 1992 Oct;17(10):438–443. doi: 10.1016/0968-0004(92)90016-3. [DOI] [PubMed] [Google Scholar]
- Argiolas A., Pisano J. J. Facilitation of phospholipase A2 activity by mastoparans, a new class of mast cell degranulating peptides from wasp venom. J Biol Chem. 1983 Nov 25;258(22):13697–13702. [PubMed] [Google Scholar]
- Aridor M., Rajmilevich G., Beaven M. A., Sagi-Eisenberg R. Activation of exocytosis by the heterotrimeric G protein Gi3. Science. 1993 Dec 3;262(5139):1569–1572. doi: 10.1126/science.7504324. [DOI] [PubMed] [Google Scholar]
- Balch W. E. Small GTP-binding proteins in vesicular transport. Trends Biochem Sci. 1990 Dec;15(12):473–477. doi: 10.1016/0968-0004(90)90301-q. [DOI] [PubMed] [Google Scholar]
- Berridge M. J., Dawson R. M., Downes C. P., Heslop J. P., Irvine R. F. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J. 1983 May 15;212(2):473–482. doi: 10.1042/bj2120473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
- Chauhan A., Chauhan V. P., Deshmukh D. S., Brockerhoff H. Phosphatidylinositol 4,5-bisphosphate competitively inhibits phorbol ester binding to protein kinase C. Biochemistry. 1989 Jun 13;28(12):4952–4956. doi: 10.1021/bi00438a007. [DOI] [PubMed] [Google Scholar]
- Chauhan V. P., Brockerhoff H. Phosphatidylinositol-4,5-bisphosphate may antecede diacylglycerol as activator of protein kinase C. Biochem Biophys Res Commun. 1988 Aug 30;155(1):18–23. doi: 10.1016/s0006-291x(88)81043-x. [DOI] [PubMed] [Google Scholar]
- Cockcroft S., Thomas G. M. Inositol-lipid-specific phospholipase C isoenzymes and their differential regulation by receptors. Biochem J. 1992 Nov 15;288(Pt 1):1–14. doi: 10.1042/bj2880001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Craxton A., Erneux C., Shears S. B. Inositol 1,4,5,6-tetrakisphosphate is phosphorylated in rat liver by a 3-kinase that is distinct from inositol 1,4,5-trisphosphate 3-kinase. J Biol Chem. 1994 Feb 11;269(6):4337–4342. [PubMed] [Google Scholar]
- Drobak B. K. Plant Phosphoinositides and Intracellular Signaling. Plant Physiol. 1993 Jul;102(3):705–709. doi: 10.1104/pp.102.3.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fairley-Grenot K., Assmann S. M. Evidence for G-Protein Regulation of Inward K+ Channel Current in Guard Cells of Fava Bean. Plant Cell. 1991 Sep;3(9):1037–1044. doi: 10.1105/tpc.3.9.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gil J., Higgins T., Rozengurt E. Mastoparan, a novel mitogen for Swiss 3T3 cells, stimulates pertussis toxin-sensitive arachidonic acid release without inositol phosphate accumulation. J Cell Biol. 1991 May;113(4):943–950. doi: 10.1083/jcb.113.4.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hetherington A. M., Drøbak B. K. Inositol-containing lipids in higher plants. Prog Lipid Res. 1992;31(1):53–63. doi: 10.1016/0163-7827(92)90015-b. [DOI] [PubMed] [Google Scholar]
- Higashijima T., Burnier J., Ross E. M. Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of activity. J Biol Chem. 1990 Aug 25;265(24):14176–14186. [PubMed] [Google Scholar]
- Higashijima T., Ross E. M. Mapping of the mastoparan-binding site on G proteins. Cross-linking of [125I-Tyr3,Cys11]mastoparan to Go. J Biol Chem. 1991 Jul 5;266(19):12655–12661. [PubMed] [Google Scholar]
- Hillaire-Buys D., Mousli M., Landry Y., Bockaert J., Fehrentsz J. A., Carrette J., Rouot B. Insulin releasing effects of mastoparan and amphiphilic substance P receptor antagonists on RINm5F insulinoma cells. Mol Cell Biochem. 1992 Feb 12;109(2):133–138. doi: 10.1007/BF00229767. [DOI] [PubMed] [Google Scholar]
- Irvine R. F., Letcher A. J., Dawson R. M. Phosphatidylinositol phosphodiesterase in higher plants. Biochem J. 1980 Oct 15;192(1):279–283. doi: 10.1042/bj1920279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joyce-Brady M., Rubins J. B., Panchenko M. P., Bernardo J., Steele M. P., Kolm L., Simons E. R., Dickey B. F. Mechanisms of mastoparan-stimulated surfactant secretion from isolated pulmonary alveolar type 2 cells. J Biol Chem. 1991 Apr 15;266(11):6859–6865. [PubMed] [Google Scholar]
- Knight M. R., Smith S. M., Trewavas A. J. Wind-induced plant motion immediately increases cytosolic calcium. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4967–4971. doi: 10.1073/pnas.89.11.4967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Komatsu M., McDermott A. M., Gillison S. L., Sharp G. W. Mastoparan stimulates exocytosis at a Ca(2+)-independent late site in stimulus-secretion coupling. Studies with the RINm5F beta-cell line. J Biol Chem. 1993 Nov 5;268(31):23297–23306. [PubMed] [Google Scholar]
- Li W., Assmann S. M. Characterization of a G-protein-regulated outward K+ current in mesophyll cells of vicia faba L. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):262–266. doi: 10.1073/pnas.90.1.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marks P. W., Maxfield F. R. Preparation of solutions with free calcium concentration in the nanomolar range using 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. Anal Biochem. 1991 Feb 15;193(1):61–71. doi: 10.1016/0003-2697(91)90044-t. [DOI] [PubMed] [Google Scholar]
- Melin P. M., Sommarin M., Sandelius A. S., Jergil B. Identification of Ca2+-stimulated polyphosphoinositide phospholipase C in isolated plant plasma membranes. FEBS Lett. 1987 Oct 19;223(1):87–91. doi: 10.1016/0014-5793(87)80515-x. [DOI] [PubMed] [Google Scholar]
- Memon A. R., Chen Q. Y., Boss W. F. Inositol phospholipids activate plasma membrane ATPase in plants. Biochem Biophys Res Commun. 1989 Aug 15;162(3):1295–1301. doi: 10.1016/0006-291x(89)90814-0. [DOI] [PubMed] [Google Scholar]
- Memon A. R., Clark G. B., Thompson G. A., Jr Identification of an ARF type low molecular mass GTP-binding protein in pea (Pisum sativum). Biochem Biophys Res Commun. 1993 Jun 30;193(3):809–813. doi: 10.1006/bbrc.1993.1697. [DOI] [PubMed] [Google Scholar]
- Memon A. R., Herrin D. L., Thompson G. A., Jr Intracellular translocation of a 28 kDa GTP-binding protein during osmotic shock-induced cell volume regulation in Dunaliella salina. Biochim Biophys Acta. 1993 Oct 7;1179(1):11–22. doi: 10.1016/0167-4889(93)90070-6. [DOI] [PubMed] [Google Scholar]
- Michell R. H. Inositol lipids in cellular signalling mechanisms. Trends Biochem Sci. 1992 Aug;17(8):274–276. doi: 10.1016/0968-0004(92)90433-a. [DOI] [PubMed] [Google Scholar]
- Missiaen L., Wuytack F., Raeymaekers L., De Smedt H., Casteels R. Polyamines and neomycin inhibit the purified plasma-membrane Ca2+ pump by interacting with associated polyphosphoinositides. Biochem J. 1989 Aug 1;261(3):1055–1058. doi: 10.1042/bj2611055. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pfaffmann H., Hartmann E., Brightman A. O., Morré D. J. Phosphatidylinositol specific phospholipase C of plant stems : membrane associated activity concentrated in plasma membranes. Plant Physiol. 1987 Dec;85(4):1151–1155. doi: 10.1104/pp.85.4.1151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pical C., Sandelius A. S., Melin P. M., Sommarin M. Polyphosphoinositide Phospholipase C in Plasma Membranes of Wheat (Triticum aestivum L.) : Orientation of Active Site and Activation by Ca and Mg. Plant Physiol. 1992 Nov;100(3):1296–1303. doi: 10.1104/pp.100.3.1296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quarmby L. M., Hartzell H. C. Two distinct, calcium-mediated, signal transduction pathways can trigger deflagellation in Chlamydomonas reinhardtii. J Cell Biol. 1994 Mar;124(5):807–815. doi: 10.1083/jcb.124.5.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quarmby L. M., Yueh Y. G., Cheshire J. L., Keller L. R., Snell W. J., Crain R. C. Inositol phospholipid metabolism may trigger flagellar excision in Chlamydomonas reinhardtii. J Cell Biol. 1992 Feb;116(3):737–744. doi: 10.1083/jcb.116.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schacht J. Purification of polyphosphoinositides by chromatography on immobilized neomycin. J Lipid Res. 1978 Nov;19(8):1063–1067. [PubMed] [Google Scholar]
- Siess W., Lapetina E. G. Neomycin inhibits inositol phosphate formation in human platelets stimulated by thrombin but not other agonists. FEBS Lett. 1986 Oct 20;207(1):53–57. doi: 10.1016/0014-5793(86)80011-4. [DOI] [PubMed] [Google Scholar]
- Simon M. I., Strathmann M. P., Gautam N. Diversity of G proteins in signal transduction. Science. 1991 May 10;252(5007):802–808. doi: 10.1126/science.1902986. [DOI] [PubMed] [Google Scholar]
- Smrcka A. V., Hepler J. R., Brown K. O., Sternweis P. C. Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. Science. 1991 Feb 15;251(4995):804–807. doi: 10.1126/science.1846707. [DOI] [PubMed] [Google Scholar]
- Staiger C. J., Goodbody K. C., Hussey P. J., Valenta R., Drøbak B. K., Lloyd C. W. The profilin multigene family of maize: differential expression of three isoforms. Plant J. 1993 Oct;4(4):631–641. doi: 10.1046/j.1365-313x.1993.04040631.x. [DOI] [PubMed] [Google Scholar]
- Sternweis P. C., Smrcka A. V. Regulation of phospholipase C by G proteins. Trends Biochem Sci. 1992 Dec;17(12):502–506. doi: 10.1016/0968-0004(92)90340-f. [DOI] [PubMed] [Google Scholar]
- Takazawa K., Vandekerckhove J., Dumont J. E., Erneux C. Cloning and expression in Escherichia coli of a rat brain cDNA encoding a Ca2+/calmodulin-sensitive inositol 1,4,5-trisphosphate 3-kinase. Biochem J. 1990 Nov 15;272(1):107–112. doi: 10.1042/bj2720107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tan Z., Boss W. F. Association of Phosphatidylinositol Kinase, Phosphatidylinositol Monophosphate Kinase, and Diacylglycerol Kinase with the Cytoskeleton and F-Actin Fractions of Carrot (Daucus carota L.) Cells Grown in Suspension Culture : Response to Cell Wall-Degrading Enzymes. Plant Physiol. 1992 Dec;100(4):2116–2120. doi: 10.1104/pp.100.4.2116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tate B. F., Schaller G. E., Sussman M. R., Crain R. C. Characterization of a Polyphosphoinositide Phospholipase C from the Plasma Membrane of Avena sativa. Plant Physiol. 1989 Dec;91(4):1275–1279. doi: 10.1104/pp.91.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor S. J., Chae H. Z., Rhee S. G., Exton J. H. Activation of the beta 1 isozyme of phospholipase C by alpha subunits of the Gq class of G proteins. Nature. 1991 Apr 11;350(6318):516–518. doi: 10.1038/350516a0. [DOI] [PubMed] [Google Scholar]
- Tysnes O. B., Steen V. M., Holmsen H. Neomycin inhibits platelet functions and inositol phospholipid metabolism upon stimulation with thrombin, but not with ionomycin or 12-O-tetradecanoyl-phorbol 13-acetate. Eur J Biochem. 1988 Oct 15;177(1):219–223. doi: 10.1111/j.1432-1033.1988.tb14365.x. [DOI] [PubMed] [Google Scholar]
- Van Rooijen L. A., Agranoff B. W. Inhibition of polyphosphoinositide phosphodiesterase by aminoglycoside antibiotics. Neurochem Res. 1985 Aug;10(8):1019–1024. doi: 10.1007/BF00965878. [DOI] [PubMed] [Google Scholar]
- Wheeler-Jones C. P., Saermark T., Kakkar V. V., Authi K. S. Mastoparan promotes exocytosis and increases intracellular cyclic AMP in human platelets. Evidence for the existence of a Ge-like mechanism of secretion. Biochem J. 1992 Jan 15;281(Pt 2):465–472. doi: 10.1042/bj2810465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson S. P. Effects of mastoparan on catecholamine release from chromaffin cells. FEBS Lett. 1989 Apr 24;247(2):239–241. doi: 10.1016/0014-5793(89)81343-2. [DOI] [PubMed] [Google Scholar]
- Wojcikiewicz R. J., Nahorski S. R. Phosphoinositide hydrolysis in permeabilized SH-SY5Y human neuroblastoma cells is inhibited by mastoparan. FEBS Lett. 1989 Apr 24;247(2):341–344. doi: 10.1016/0014-5793(89)81366-3. [DOI] [PubMed] [Google Scholar]
- Yang W., Boss W. F. Regulation of phosphatidylinositol 4-kinase by the protein activator PIK-A49. Activation requires phosphorylation of PIK-A49. J Biol Chem. 1994 Feb 4;269(5):3852–3857. [PubMed] [Google Scholar]
- Yazawa M., Ikura M., Hikichi K., Ying L., Yagi K. Communication between two globular domains of calmodulin in the presence of mastoparan or caldesmon fragment. Ca2+ binding and 1H NMR. J Biol Chem. 1987 Aug 15;262(23):10951–10954. [PubMed] [Google Scholar]
- Yokokawa N., Komatsu M., Takeda T., Aizawa T., Yamada T. Mastoparan, a wasp venom, stimulates insulin release by pancreatic islets through pertussis toxin sensitive GTP-binding protein. Biochem Biophys Res Commun. 1989 Feb 15;158(3):712–716. doi: 10.1016/0006-291x(89)92779-4. [DOI] [PubMed] [Google Scholar]
- Yule D. I., Williams J. A. Mastoparan induces oscillations of cytosolic Ca2+ in rat pancreatic acinar cells. Biochem Biophys Res Commun. 1991 May 31;177(1):159–165. doi: 10.1016/0006-291x(91)91962-c. [DOI] [PubMed] [Google Scholar]