Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Mar;107(3):865–872. doi: 10.1104/pp.107.3.865

Arginine Decarboxylase and Putrescine Oxidase in Ovaries of Pisum sativum L. (Changes during Ovary Senescence and Early Stages of Fruit Development).

M A Perez-Amador 1, J Carbonell 1
PMCID: PMC157203  PMID: 12228409

Abstract

Enzymatic activities involved in putrescine metabolism in ovaries of Pisum sativum L. during ovary senescence and fruit set were investigated. Accumulation of putrescine was observed during incubation of extracts from gibberellic acid-treated unpollinated ovaries (young developing fruits) but not in extracts from untreated ovaries (senescent ovaries). Extracts from pea ovaries showed arginine decarboxylase (ADC) activity, but ornithine decarboxylase and arginase activity were not detected. ADC activity decreased in presenescent ovaries and increased markedly after induction of fruit set with gibberellic acid. Increases in ADC activity were also observed with application of other plant growth substances (benzy-ladenine and 2,4-dichlorophenoxyacetic acid), after pollination, and in the slender (la crys) pea mutant. By contrast, putrescine oxidase activity increased in presenescent ovaries but did not increase during early fruit development. All of these results suggest that ADC and putrescine oxidase are involved in the control of putrescine metabolism. Ovary senescence is characterized by the absence of putrescine biosynthesis enzymes and increased levels of putrescine oxidase and fruit development by an increase in ADC and a constant level of putrescine oxidase.

Full Text

The Full Text of this article is available as a PDF (717.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Cohen E., Arad S. M., Heimer Y. M., Mizrahi Y. Participation of ornithine decarboxylase in early stages of tomato fruit development. Plant Physiol. 1982 Aug;70(2):540–543. doi: 10.1104/pp.70.2.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dai Y. R., Kaur-Sawhney R., Galston A. W. Promotion by gibberellic Acid of polyamine biosynthesis in internodes of light-grown dwarf peas. Plant Physiol. 1982 Jan;69(1):103–106. doi: 10.1104/pp.69.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Garcia-España A., Carbonell J., Rubio V. Carbamoyl phosphate synthetase, ornithine transcarbamylase, and aspartate transcarbamylase activities in the pea ovary : changes with senescence of the unpollinated ovary or with fruit set induced by gibberellic Acid. Plant Physiol. 1989 Aug;90(4):1565–1569. doi: 10.1104/pp.90.4.1565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kushad M. M., Yelenosky G., Knight R. Interrelationship of Polyamine and Ethylene Biosynthesis during Avocado Fruit Development and Ripening. Plant Physiol. 1988 Jun;87(2):463–467. doi: 10.1104/pp.87.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. OKUYAMA T., KOBAYASHI Y. Determination of diamine oxidase activity by liquid scintillation counting. Arch Biochem Biophys. 1961 Nov;95:242–250. doi: 10.1016/0003-9861(61)90141-2. [DOI] [PubMed] [Google Scholar]
  7. Slocum R. D., Galston A. W. Changes in polyamine biosynthesis associated with postfertilization growth and development in tobacco ovary tissues. Plant Physiol. 1985;79:336–343. doi: 10.1104/pp.79.2.336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Tiburcio A. F., Kaur-Sawhney R., Ingersoll R. B., Galston A. W. Correlation between polyamines and pyrrolidine alkaloids in developing tobacco callus. Plant Physiol. 1985;78:323–326. doi: 10.1104/pp.78.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. de Ruiter H., Kollöffel C. Activity of enzymes of arginine metabolism in the cotyledons of developing and germinating pea seeds. Plant Physiol. 1982 Jul;70(1):313–315. doi: 10.1104/pp.70.1.313. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES