Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Mar;107(3):895–904. doi: 10.1104/pp.107.3.895

Sugar-inducible expression of a gene for beta-amylase in Arabidopsis thaliana.

S Mita 1, K Suzuki-Fujii 1, K Nakamura 1
PMCID: PMC157206  PMID: 7716246

Abstract

The levels of beta-amylase activity and of the mRNA for beta-amylase in rosette leaves of Arabidopsis thaliana (L.) Heynh. increased significantly, with the concomitant accumulation of starch, when whole plants or excised mature leaves were supplied with sucrose. A supply of glucose or fructose, but not of mannitol or sorbitol, to plants also induced the expression of the gene for beta-amylase, and the induction occurred not only in rosette leaves but also in roots, stems, and bracts. These results suggest that the gene for beta-amylase of Arabidopsis is subject to regulation by a carbohydrate metabolic signal, and expression of the gene in various tissues may be regulated by the carbon partitioning and sink-source interactions in the whole plant. The sugar-inducible expression of the gene in Arabidopsis was severely repressed in the absence of light. The sugar-inducible expression in the light was not inhibited by 3(3,4-dichlorophenyl)-1,1-dimethylurea or by chloramphenicol, but it was inhibited by cycloheximide. These results suggest that a light-induced signal and de novo synthesis of proteins in the cytoplasm are involved in the regulation. A fusion gene composed of the 5' upstream region of the gene for beta-amylase from Arabidopsis and the coding sequence of beta-glucuronidase showed the sugar-inducible expression in a light-dependent manner in rosette leaves of transgenic Arabidopsis.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Caspar T., Lin T. P., Monroe J., Bernhard W., Spilatro S., Preiss J., Somerville C. Altered regulation of beta-amylase activity in mutants of Arabidopsis with lesions in starch metabolism. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5830–5833. doi: 10.1073/pnas.86.15.5830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cheng C. L., Acedo G. N., Cristinsin M., Conkling M. A. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1861–1864. doi: 10.1073/pnas.89.5.1861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Grierson C., Du J. S., de Torres Zabala M., Beggs K., Smith C., Holdsworth M., Bevan M. Separate cis sequences and trans factors direct metabolic and developmental regulation of a potato tuber storage protein gene. Plant J. 1994 Jun;5(6):815–826. doi: 10.1046/j.1365-313x.1994.5060815.x. [DOI] [PubMed] [Google Scholar]
  4. Hood E. E., Helmer G. L., Fraley R. T., Chilton M. D. The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol. 1986 Dec;168(3):1291–1301. doi: 10.1128/jb.168.3.1291-1301.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ishiguro S., Tanaka M., Kojimoto A., Kato M., Iwabuchi M., Nakamura K. A nuclear factor that binds to a dyad-symmetric sequence with a CGTCA motif in the 5'-upstream region of the sweet potato beta-amylase gene. Plant Cell Physiol. 1993 Jun;34(4):567–576. [PubMed] [Google Scholar]
  6. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lizotte P. A., Henson C. A., Duke S. H. Purification and Characterization of Pea Epicotyl beta-Amylase. Plant Physiol. 1990 Mar;92(3):615–621. doi: 10.1104/pp.92.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Monroe J. D., Preiss J. Purification of a beta-Amylase that Accumulates in Arabidopsis thaliana Mutants Defective in Starch Metabolism. Plant Physiol. 1990 Nov;94(3):1033–1039. doi: 10.1104/pp.94.3.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Monroe J. D., Salminen M. D., Preiss J. Nucleotide Sequence of a cDNA Clone Encoding a beta-Amylase from Arabidopsis thaliana. Plant Physiol. 1991 Dec;97(4):1599–1601. doi: 10.1104/pp.97.4.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Morita Y., Aibara S., Yamashita H., Yagi F., Suganuma T. Crystallization and preliminary x-ray investigation of soybean beta-amylase. J Biochem. 1975 Feb;77(2):343–351. doi: 10.1093/oxfordjournals.jbchem.a130731. [DOI] [PubMed] [Google Scholar]
  11. Nakamura K., Ohto M. A., Yoshida N., Nakamura K. Sucrose-Induced Accumulation of beta-Amylase Occurs Concomitant with the Accumulation of Starch and Sporamin in Leaf-Petiole Cuttings of Sweet Potato. Plant Physiol. 1991 Jul;96(3):902–909. doi: 10.1104/pp.96.3.902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ohto M. A., Nakamura-Kito K., Nakamura K. Induction of Expression of Genes Coding for Sporamin and beta-Amylase by Polygalacturonic Acid in Leaf-Petiole Cuttings of Sweet Potato. Plant Physiol. 1992 Jun;99(2):422–427. doi: 10.1104/pp.99.2.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Subbaramaiah K., Sharma R. beta-Amylase from Mustard (Sinapis alba L.) Cotyledons : Immunochemical Evidence for Synthesis de Novo during Photoregulated Seedling Development. Plant Physiol. 1989 Mar;89(3):860–866. doi: 10.1104/pp.89.3.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Takeda S., Mano S., Ohto Ma., Nakamura K. Inhibitors of Protein Phosphatases 1 and 2A Block the Sugar-Inducible Gene Expression in Plants. Plant Physiol. 1994 Oct;106(2):567–574. doi: 10.1104/pp.106.2.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Williams M. E., Foster R., Chua N. H. Sequences flanking the hexameric G-box core CACGTG affect the specificity of protein binding. Plant Cell. 1992 Apr;4(4):485–496. doi: 10.1105/tpc.4.4.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Yang Y., Kwon H. B., Peng H. P., Shih M. C. Stress responses and metabolic regulation of glyceraldehyde-3-phosphate dehydrogenase genes in Arabidopsis. Plant Physiol. 1993 Jan;101(1):209–216. doi: 10.1104/pp.101.1.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Yoshida N., Hayashi K., Nakamura K. A nuclear gene encoding beta-amylase of sweet potato. Gene. 1992 Oct 21;120(2):255–259. doi: 10.1016/0378-1119(92)90101-t. [DOI] [PubMed] [Google Scholar]
  18. Yoshida N., Nakamura K. Molecular cloning and expression in Escherichia coli of cDNA encoding the subunit of sweet potato beta-amylase. J Biochem. 1991 Aug;110(2):196–201. doi: 10.1093/oxfordjournals.jbchem.a123556. [DOI] [PubMed] [Google Scholar]
  19. Ziegler P., Beck E. Exoamylase activity in vacuoles isolated from pea and wheat leaf protoplasts. Plant Physiol. 1986 Dec;82(4):1119–1121. doi: 10.1104/pp.82.4.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES