Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Mar;107(3):925–932. doi: 10.1104/pp.107.3.925

Developmental Regulation of Respiratory Activity in Pea Leaves.

A M Lennon 1, J Pratt 1, G Leach 1, A L Moore 1
PMCID: PMC157209  PMID: 12228412

Abstract

The developmental pattern of mitochondrial respiratory activity in pea (Pisum sativum) leaves has been investigated in an attempt to determine changes in mitochondrial function as plant cells mature. NADH and succinate dehydrogenase and cytochrome c oxidase activities remained relatively constant during cell maturation (from d 0 to d 14). Alternative oxidase and glycine decarboxylase activity, however, were low in young leaf tissue (d 0-6) but increased substantially as the tissue matured (d 7-14) and gained photorespiratory activity. Western blot analysis of the alternative oxidase protein revealed that it was primarily in an oxidized state in young leaves (d 0-6) but switched dramatically to the reduced form of the protein as the pea cells matured (d 7-14). The switch to the reduced form of the protein correlated with an increase in alternative oxidase activity. Results are discussed in terms of the changing function of plant mitochondria during leaf development.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Conley C. A., Hanson M. R. Tissue-Specific Protein Expression in Plant Mitochondria. Plant Cell. 1994 Jan;6(1):85–91. doi: 10.1105/tpc.6.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Croxdale J. G., Pappas T. Activity of Glyceraldehyde-3-Phosphate Dehydrogenase-NADP in Developing Leaves of Light-Grown Dianthus chinensis L. Plant Physiol. 1987 Aug;84(4):1427–1430. doi: 10.1104/pp.84.4.1427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Croxdale J. G. Quantitative Measurements of Phosphofructokinase in the Shoot Apical Meristem, Leaf Primordia, and Leaf Tissues of Dianthus chinensis L. Plant Physiol. 1983 Sep;73(1):66–70. doi: 10.1104/pp.73.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dahlin C., Cline K. Developmental Regulation of the Plastid Protein Import Apparatus. Plant Cell. 1991 Oct;3(10):1131–1140. doi: 10.1105/tpc.3.10.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dry I. B., Moore A. L., Day D. A., Wiskich J. T. Regulation of alternative pathway activity in plant mitochondria: nonlinear relationship between electron flux and the redox poise of the quinone pool. Arch Biochem Biophys. 1989 Aug 15;273(1):148–157. doi: 10.1016/0003-9861(89)90173-2. [DOI] [PubMed] [Google Scholar]
  6. Elthon T. E., Nickels R. L., McIntosh L. Monoclonal antibodies to the alternative oxidase of higher plant mitochondria. Plant Physiol. 1989 Apr;89(4):1311–1317. doi: 10.1104/pp.89.4.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gardeström P., Wigge B. Influence of Photorespiration on ATP/ADP Ratios in the Chloroplasts, Mitochondria, and Cytosol, Studied by Rapid Fractionation of Barley (Hordeum vulgare) Protoplasts. Plant Physiol. 1988 Sep;88(1):69–76. doi: 10.1104/pp.88.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hanning I., Heldt H. W. On the Function of Mitochondrial Metabolism during Photosynthesis in Spinach (Spinacia oleracea L.) Leaves (Partitioning between Respiration and Export of Redox Equivalents and Precursors for Nitrate Assimilation Products). Plant Physiol. 1993 Dec;103(4):1147–1154. doi: 10.1104/pp.103.4.1147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kearns A., Whelan J., Young S., Elthon T. E., Day D. A. Tissue-specific expression of the alternative oxidase in soybean and siratro. Plant Physiol. 1992 Jun;99(2):712–717. doi: 10.1104/pp.99.2.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kromer S., Malmberg G., Gardestrom P. Mitochondrial Contribution to Photosynthetic Metabolism (A Study with Barley (Hordeum vulgare L.) Leaf Protoplasts at Different Light Intensities and CO2 Concentrations). Plant Physiol. 1993 Jul;102(3):947–955. doi: 10.1104/pp.102.3.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. McIntosh L. Molecular biology of the alternative oxidase. Plant Physiol. 1994 Jul;105(3):781–786. doi: 10.1104/pp.105.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Millar A. H., Wiskich J. T., Whelan J., Day D. A. Organic acid activation of the alternative oxidase of plant mitochondria. FEBS Lett. 1993 Aug 30;329(3):259–262. doi: 10.1016/0014-5793(93)80233-k. [DOI] [PubMed] [Google Scholar]
  14. Moore A. L., Fricaud A. C., Walters A. J., Whitehouse D. G. Isolation and purification of functionally intact mitochondria from plant cells. Methods Mol Biol. 1993;19:133–139. doi: 10.1385/0-89603-236-1:133. [DOI] [PubMed] [Google Scholar]
  15. Moore A. L., Leach G., Whitehouse D. G. The regulation of oxidative phosphorylation in plant mitochondria: the roles of the quinone-oxidizing and -reducing pathways. Biochem Soc Trans. 1993 Aug;21(3):765–769. doi: 10.1042/bst0210765. [DOI] [PubMed] [Google Scholar]
  16. Moore A. L., Siedow J. N. The regulation and nature of the cyanide-resistant alternative oxidase of plant mitochondria. Biochim Biophys Acta. 1991 Aug 23;1059(2):121–140. doi: 10.1016/s0005-2728(05)80197-5. [DOI] [PubMed] [Google Scholar]
  17. Proudlove M. O., Beechey R. B., Moore A. L. Pyruvate transport by thermogenic-tissue mitochondria. Biochem J. 1987 Oct 15;247(2):441–447. doi: 10.1042/bj2470441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rhoads D. M., McIntosh L. Salicylic Acid Regulation of Respiration in Higher Plants: Alternative Oxidase Expression. Plant Cell. 1992 Sep;4(9):1131–1139. doi: 10.1105/tpc.4.9.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rigoulet M., Fitton V., Ouhabi R., Guérin B. Kinetic constraints and oxidative phosphorylation yield in yeast mitochondria. Biochem Soc Trans. 1993 Aug;21(3):773–777. doi: 10.1042/bst0210773. [DOI] [PubMed] [Google Scholar]
  20. Rogers W. J., Jordan B. R., Rawsthorne S., Tobin A. K. Changes to the Stoichiometry of Glycine Decarboxylase Subunits during Wheat (Triticum aestivum L.) and Pea (Pisum sativum L.) Leaf Development. Plant Physiol. 1991 Jul;96(3):952–956. doi: 10.1104/pp.96.3.952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tobin A. K., Thorpe J. R., Hylton C. M., Rawsthorne S. Spatial and Temporal Influences on the Cell-Specific Distribution of Glycine Decarboxylase in Leaves of Wheat (Triticum aestivum L.) and Pea (Pisum sativum L.). Plant Physiol. 1989 Nov;91(3):1219–1225. doi: 10.1104/pp.91.3.1219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Umbach A. L., Siedow J. N. Covalent and Noncovalent Dimers of the Cyanide-Resistant Alternative Oxidase Protein in Higher Plant Mitochondria and Their Relationship to Enzyme Activity. Plant Physiol. 1993 Nov;103(3):845–854. doi: 10.1104/pp.103.3.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Umbach A. L., Wiskich J. T., Siedow J. N. Regulation of alternative oxidase kinetics by pyruvate and intermolecular disulfide bond redox status in soybean seedling mitochondria. FEBS Lett. 1994 Jul 11;348(2):181–184. doi: 10.1016/0014-5793(94)00600-8. [DOI] [PubMed] [Google Scholar]
  25. Walker J. L., Oliver D. J. Light-induced increases in the glycine decarboxylase multienzyme complex from pea leaf mitochondria. Arch Biochem Biophys. 1986 Aug 1;248(2):626–638. doi: 10.1016/0003-9861(86)90517-5. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES