Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Mar;107(3):963–976. doi: 10.1104/pp.107.3.963

Functional implications of structure-based sequence alignment of proteins in the extracellular pectate lyase superfamily.

B Henrissat 1, S E Heffron 1, M D Yoder 1, S E Lietzke 1, F Jurnak 1
PMCID: PMC157213  PMID: 7716248

Abstract

Pectate lyases are plant virulence factors that degrade the pectate component of the plant cell wall. The enzymes share considerable sequence homology with plant pollen and style proteins, suggesting a shared structural topology and possibly functional relationships as well. The three-dimensional structures of two Erwinia chrysanthemi pectate lyases, C and E, have been superimposed and the structurally conserved amino acids have been identified. There are 232 amino acids that superimpose with a root-mean-square deviation of 3 A or less. These amino acids have been used to correct the primary sequence alignment derived from evolution-based techniques. Subsequently, multiple alignment techniques have allowed the realignment of other extracellular pectate lyases as well as all sequence homologs, including pectin lyases and the plant pollen and style proteins. The new multiple sequence alignment reveals amino acids likely to participate in the parallel beta helix motif, those involved in binding Ca2+, and those invariant amino acids with potential catalytic properties. The latter amino acids cluster in two well-separated regions on the pectate lyase structures, suggesting two distinct enzymatic functions for extracellular pectate lyases and their sequence homologs.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson H., von Heijne G. A 30-residue-long "export initiation domain" adjacent to the signal sequence is critical for protein translocation across the inner membrane of Escherichia coli. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9751–9754. doi: 10.1073/pnas.88.21.9751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brooks A. D., He S. Y., Gold S., Keen N. T., Collmer A., Hutcheson S. W. Molecular cloning of the structural gene for exopolygalacturonate lyase from Erwinia chrysanthemi EC16 and characterization of the enzyme product. J Bacteriol. 1990 Dec;172(12):6950–6958. doi: 10.1128/jb.172.12.6950-6958.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Budelier K. A., Smith A. G., Gasser C. S. Regulation of a stylar transmitting tissue-specific gene in wild-type and transgenic tomato and tobacco. Mol Gen Genet. 1990 Nov;224(2):183–192. doi: 10.1007/BF00271551. [DOI] [PubMed] [Google Scholar]
  4. Chatterjee A., McEvoy J. L., Chambost J. P., Blasco F., Chatterjee A. K. Nucleotide sequence and molecular characterization of pnlA, the structural gene for damage-inducible pectin lyase of Erwinia carotovora subsp. carotovora 71. J Bacteriol. 1991 Mar;173(5):1765–1769. doi: 10.1128/jb.173.5.1765-1769.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. González-Candelas L., Kolattukudy P. E. Isolation and analysis of a novel inducible pectate lyase gene from the phytopathogenic fungus Fusarium solani f. sp. pisi (Nectria haematococca, mating population VI). J Bacteriol. 1992 Oct;174(20):6343–6349. doi: 10.1128/jb.174.20.6343-6349.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Griffith I. J., Pollock J., Klapper D. G., Rogers B. L., Nault A. K. Sequence polymorphism of Amb a I and Amb a II, the major allergens in Ambrosia artemisiifolia (short ragweed). Int Arch Allergy Appl Immunol. 1991;96(4):296–304. doi: 10.1159/000235512. [DOI] [PubMed] [Google Scholar]
  7. Gysler C., Harmsen J. A., Kester H. C., Visser J., Heim J. Isolation and structure of the pectin lyase D-encoding gene from Aspergillus niger. Gene. 1990 Apr 30;89(1):101–108. doi: 10.1016/0378-1119(90)90211-9. [DOI] [PubMed] [Google Scholar]
  8. Henrissat B., Claeyssens M., Tomme P., Lemesle L., Mornon J. P. Cellulase families revealed by hydrophobic cluster analysis. Gene. 1989 Sep 1;81(1):83–95. doi: 10.1016/0378-1119(89)90339-9. [DOI] [PubMed] [Google Scholar]
  9. Hinton J. C., Sidebotham J. M., Gill D. R., Salmond G. P. Extracellular and periplasmic isoenzymes of pectate lyase from Erwinia carotovora subspecies carotovora belong to different gene families. Mol Microbiol. 1989 Dec;3(12):1785–1795. doi: 10.1111/j.1365-2958.1989.tb00164.x. [DOI] [PubMed] [Google Scholar]
  10. Hugouvieux-Cotte-Pattat N., Robert-Baudouy J. Analysis of the regulation of the pelBC genes in Erwinia chrysanthemi 3937. Mol Microbiol. 1992 Aug;6(16):2363–2376. doi: 10.1111/j.1365-2958.1992.tb01411.x. [DOI] [PubMed] [Google Scholar]
  11. Kusters-van Someren M., Flipphi M., de Graaff L., van den Broeck H., Kester H., Hinnen A., Visser J. Characterization of the Aspergillus niger pelB gene: structure and regulation of expression. Mol Gen Genet. 1992 Jul;234(1):113–120. doi: 10.1007/BF00272352. [DOI] [PubMed] [Google Scholar]
  12. Lei S. P., Lin H. C., Wang S. S., Callaway J., Wilcox G. Characterization of the Erwinia carotovora pelB gene and its product pectate lyase. J Bacteriol. 1987 Sep;169(9):4379–4383. doi: 10.1128/jb.169.9.4379-4383.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lei S. P., Lin H. C., Wang S. S., Wilcox G. Characterization of the Erwinia carotovora pelA gene and its product pectate lyase A. Gene. 1988;62(1):159–164. doi: 10.1016/0378-1119(88)90590-2. [DOI] [PubMed] [Google Scholar]
  14. Lietzke S. E., Yoder M. D., Keen N. T., Jurnak F. The Three-Dimensional Structure of Pectate Lyase E, a Plant Virulence Factor from Erwinia chrysanthemi. Plant Physiol. 1994 Nov;106(3):849–862. doi: 10.1104/pp.106.3.849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nasser W., Awadé A. C., Reverchon S., Robert-Baudouy J. Pectate lyase from Bacillus subtilis: molecular characterization of the gene, and properties of the cloned enzyme. FEBS Lett. 1993 Dec 13;335(3):319–326. doi: 10.1016/0014-5793(93)80410-v. [DOI] [PubMed] [Google Scholar]
  16. Nikaidou N., Kamio Y., Izaki K. Molecular cloning and nucleotide sequence of a pectin lyase gene from Pseudomonas marginalis N6301. Biochem Biophys Res Commun. 1992 Jan 15;182(1):14–19. doi: 10.1016/s0006-291x(05)80105-6. [DOI] [PubMed] [Google Scholar]
  17. Nikaidou N., Kamio Y., Izaki K. Molecular cloning and nucleotide sequence of the pectate lyase gene from Pseudomonas marginalis N6301. Biosci Biotechnol Biochem. 1993 Jun;57(6):957–960. doi: 10.1271/bbb.57.957. [DOI] [PubMed] [Google Scholar]
  18. Nishida T., Suzuki T., Ito K., Kamio Y., Izaki K. Cloning and expression of pectin lyase gene from Erwinia carotovora in Escherichia coli. Biochem Biophys Res Commun. 1990 Apr 30;168(2):801–808. doi: 10.1016/0006-291x(90)92392-d. [DOI] [PubMed] [Google Scholar]
  19. Ohnishi H., Nishida T., Yoshida A., Kamio Y., Izaki K. Nucleotide sequence of pnl gene from Erwinia carotovora Er. Biochem Biophys Res Commun. 1991 Apr 15;176(1):321–327. doi: 10.1016/0006-291x(91)90927-y. [DOI] [PubMed] [Google Scholar]
  20. Pickersgill R., Jenkins J., Harris G., Nasser W., Robert-Baudouy J. The structure of Bacillus subtilis pectate lyase in complex with calcium. Nat Struct Biol. 1994 Oct;1(10):717–723. doi: 10.1038/nsb1094-717. [DOI] [PubMed] [Google Scholar]
  21. Preston J. F., 3rd, Rice J. D., Ingram L. O., Keen N. T. Differential depolymerization mechanisms of pectate lyases secreted by Erwinia chrysanthemi EC16. J Bacteriol. 1992 Mar;174(6):2039–2042. doi: 10.1128/jb.174.6.2039-2042.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rafnar T., Griffith I. J., Kuo M. C., Bond J. F., Rogers B. L., Klapper D. G. Cloning of Amb a I (antigen E), the major allergen family of short ragweed pollen. J Biol Chem. 1991 Jan 15;266(2):1229–1236. [PubMed] [Google Scholar]
  23. Sone T., Komiyama N., Shimizu K., Kusakabe T., Morikubo K., Kino K. Cloning and sequencing of cDNA coding for Cry j I, a major allergen of Japanese cedar pollen. Biochem Biophys Res Commun. 1994 Mar 15;199(2):619–625. doi: 10.1006/bbrc.1994.1273. [DOI] [PubMed] [Google Scholar]
  24. Tamaki S. J., Gold S., Robeson M., Manulis S., Keen N. T. Structure and organization of the pel genes from Erwinia chrysanthemi EC16. J Bacteriol. 1988 Aug;170(8):3468–3478. doi: 10.1128/jb.170.8.3468-3478.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Turcich M. P., Hamilton D. A., Mascarenhas J. P. Isolation and characterization of pollen-specific maize genes with sequence homology to ragweed allergens and pectate lyases. Plant Mol Biol. 1993 Dec;23(5):1061–1065. doi: 10.1007/BF00021820. [DOI] [PubMed] [Google Scholar]
  26. Wing R. A., Yamaguchi J., Larabell S. K., Ursin V. M., McCormick S. Molecular and genetic characterization of two pollen-expressed genes that have sequence similarity to pectate lyases of the plant pathogen Erwinia. Plant Mol Biol. 1990 Jan;14(1):17–28. doi: 10.1007/BF00015651. [DOI] [PubMed] [Google Scholar]
  27. Yoder M. D., Jurnak F. The Refined Three-Dimensional Structure of Pectate Lyase C from Erwinia chrysanthemi at 2.2 Angstrom Resolution (Implications for an Enzymatic Mechanism). Plant Physiol. 1995 Feb;107(2):349–364. doi: 10.1104/pp.107.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yoder M. D., Keen N. T., Jurnak F. New domain motif: the structure of pectate lyase C, a secreted plant virulence factor. Science. 1993 Jun 4;260(5113):1503–1507. doi: 10.1126/science.8502994. [DOI] [PubMed] [Google Scholar]
  29. Yoshida A., Izuta M., Ito K., Kamio Y., Izaki K. Cloning and characterization of the pectate lyase III gene of Erwinia carotovora Er. Agric Biol Chem. 1991 Apr;55(4):933–940. [PubMed] [Google Scholar]
  30. Yoshida A., Matsuo Y., Kamio Y., Izaki K. Molecular cloning and sequencing of the extracellular pectate lyase II gene from Erwinia carotovora Er. Biosci Biotechnol Biochem. 1992 Oct;56(10):1596–1600. doi: 10.1271/bbb.56.1596. [DOI] [PubMed] [Google Scholar]
  31. van Gijsegem F. Relationship between the pel genes of the pelADE cluster in Erwinia chrysanthemi strain B374. Mol Microbiol. 1989 Oct;3(10):1415–1424. doi: 10.1111/j.1365-2958.1989.tb00124.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES