Abstract
In Arabidopsis thaliana, urease transcript levels increased sharply between 2 and 4 d after germination (DAG) and were maintained at maximal levels until at least 8 DAG. Seed urease specific activity declined upon germination but began to increase in seedlings 2 DAG, reaching approximately 75% of seed activity by 8 DAG. Urea levels showed a small transient increase 1 DAG and then approximately paralleled urease activity, reaching maximal levels at approximately 9 DAG. Urease inhibition with phenylphosphorodiamidate resulted in a 2- to 4-fold increase in urea levels throughout seedling development. Arginine pools (0-8 DAG) changed approximately in parallel with the urea pool. Consistent with arginine being a major source of urea, arginase activity increased 10-fold in the interval 0 to 6 DAG. Allopurinol, a xanthine dehydrogenase inhibitor, had no effect on urea levels up to 3 DAG but reduced the urea pool by 30 to 40% during the interval 5 to 8 DAG, suggesting that purine degradation contributed to the urea pool well after germination, if at all. in aged Arabidopsis seeds, there was correlation between phenylphosphorodiamidate inactivation of urease and germination inhibition, the latter overcome by NH4NO3 or amino acids. Since urease activity, urea precursor, and urea increase in young seedlings, and since urease inactivation results in a nitrogen-reversible inhibition of germination, we propose that urease recycles urea-nitrogen in the seedling.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Eskew D. L., Welch R. M., Cary E. E. Nickel: an essential micronutrient for legumes and possibly all higher plants. Science. 1983 Nov 11;222(4624):621–623. doi: 10.1126/science.222.4624.621. [DOI] [PubMed] [Google Scholar]
- Fujihara S., Yamaguchi M. Effects of Allopurinol [4-Hydroxypyrazolo(3,4-d)Pyrimidine] on the Metabolism of Allantoin in Soybean Plants. Plant Physiol. 1978 Jul;62(1):134–138. doi: 10.1104/pp.62.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kobashi K., Takebe S., Numata A. Specific inhibition of urease by N-acylphosphoric triamides. J Biochem. 1985 Dec;98(6):1681–1688. doi: 10.1093/oxfordjournals.jbchem.a135439. [DOI] [PubMed] [Google Scholar]
- Krebbers E., Herdies L., De Clercq A., Seurinck J., Leemans J., Van Damme J., Segura M., Gheysen G., Van Montagu M., Vandekerckhove J. Determination of the Processing Sites of an Arabidopsis 2S Albumin and Characterization of the Complete Gene Family. Plant Physiol. 1988 Aug;87(4):859–866. doi: 10.1104/pp.87.4.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krogmeier M. J., McCarty G. W., Bremner J. M. Phytotoxicity of foliar-applied urea. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8189–8191. doi: 10.1073/pnas.86.21.8189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krueger R. W., Holland M. A., Chisholm D., Polacco J. C. Recovery of a soybean urease genomic clone by sequential library screening with two synthetic oligodeoxynucleotides. Gene. 1987;54(1):41–50. doi: 10.1016/0378-1119(87)90345-3. [DOI] [PubMed] [Google Scholar]
- Krumpelman P. M., Freyermuth S. K., Cannon J. F., Fink G. R., Polacco J. C. Nucleotide sequence of Arabidopsis thaliana arginase expressed in yeast. Plant Physiol. 1995 Apr;107(4):1479–1480. doi: 10.1104/pp.107.4.1479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ludwig R. A. Arabidopsis chloroplasts dissimilate L-arginine and L-citrulline for use as N source. Plant Physiol. 1993 Feb;101(2):429–434. doi: 10.1104/pp.101.2.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Polacco J. C. Nitrogen Metabolism in Soybean Tissue Culture: II. Urea Utilization and Urease Synthesis Require Ni. Plant Physiol. 1977 May;59(5):827–830. doi: 10.1104/pp.59.5.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shelp B. J., Ireland R. J. Ureide metabolism in leaves of nitrogen-fixing soybean plants. Plant Physiol. 1985 Mar;77(3):779–783. doi: 10.1104/pp.77.3.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stebbins N., Holland M. A., Cianzio S. R., Polacco J. C. Genetic tests of the roles of the embryonic ureases of soybean. Plant Physiol. 1991 Nov;97(3):1004–1010. doi: 10.1104/pp.97.3.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor A. A., Stewart G. R. Tissue and subcellular localization of enzymes of arginine metabolism in Pisum sativum. Biochem Biophys Res Commun. 1981 Aug 31;101(4):1281–1289. doi: 10.1016/0006-291x(81)91586-2. [DOI] [PubMed] [Google Scholar]
- Torisky R. S., Griffin J. D., Yenofsky R. L., Polacco J. C. A single gene (Eu4) encodes the tissue-ubiquitous urease of soybean. Mol Gen Genet. 1994 Feb;242(4):404–414. doi: 10.1007/BF00281790. [DOI] [PubMed] [Google Scholar]
- Triplett E. W., Blevins D. G., Randall D. D. Allantoic Acid Synthesis in Soybean Root Nodule Cytosol via Xanthine Dehydrogenase. Plant Physiol. 1980 Jun;65(6):1203–1206. doi: 10.1104/pp.65.6.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]