Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Apr;107(4):1139–1146. doi: 10.1104/pp.107.4.1139

2,4-Dichlorophenoxyacetic Acid and Related Chlorinated Compounds Inhibit Two Auxin-Regulated Type-III Tobacco Glutathione S-Transferases.

FNJ Droog 1, PJJ Hooykaas 1, B J Van Der Zaal 1
PMCID: PMC157246  PMID: 12228421

Abstract

Two auxin-inducible glutathione S-transferase (GST, EC 2.5.1.18) isozymes from tobacco (Nicotiana tabacum, White Burley) were partially characterized. GST1-1 and GST2-1 are members of a recently identified new type of plant GST isozymes that we will here refer to as type III. Both enzymes were active, with 1-chloro-2,4-dinitrobenzene as a substrate, when expressed in bacteria as fusion proteins. The apparent Km for 1-chloro-2,4-dinitrobenzene was found to be 0.85 [plus or minus] 0.25 mM for GST1-1 and 0.20 [plus or minus] 0.15 mM for GST2-1. The apparent Km for glutathione was similar for both enzymes, 0.40 [plus or minus] 0.15 mM. The in vitro activity of both enzymes could be inhibited by the synthetic auxin 2,4-dichlorophenoxyacetic acid, with an apparent Ki of 80 [plus or minus] 40 [mu]M for GST1-1 and 200 [plus or minus] 100 [mu]M for GST2-1. The GST1-1 was also inhibited by structurally related substances, such as 2,4-dichlorobenzoic acid, with a roughly similar Ki. The nonchlorinated structures benzoic acid and phenoxyacetic acid did not inhibit. p-Chloroisobutyric acid, or clofibric acid, an auxin-transport inhibitor, was found to be an active inhibitor as well. The strongest inhibitor identified, however, was a phenylacetic acid derivative, ethacrynic acid, which showed an apparent Ki of 5 [plus or minus] 5 [mu]M for both enzymes. This substance is a known inducer as well as a substrate of specific mammalian GSTs. The results presented here indicate that the type III plant GSTs might be involved in the metabolism or transport of chlorinated substances that are structurally related to auxins. The possibility that auxins are endogenous ligands or substrates for GSTs is discussed.

Full Text

The Full Text of this article is available as a PDF (804.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahokas J. T., Nicholls F. A., Ravenscroft P. J., Emmerson B. T. Inhibition of purified rat liver glutathione S-transferase isozymes by diuretic drugs. Biochem Pharmacol. 1985 Jun 15;34(12):2157–2161. doi: 10.1016/0006-2952(85)90411-3. [DOI] [PubMed] [Google Scholar]
  2. Bartling D., Radzio R., Steiner U., Weiler E. W. A glutathione S-transferase with glutathione-peroxidase activity from Arabidopsis thaliana. Molecular cloning and functional characterization. Eur J Biochem. 1993 Sep 1;216(2):579–586. doi: 10.1111/j.1432-1033.1993.tb18177.x. [DOI] [PubMed] [Google Scholar]
  3. Bilang J., Macdonald H., King P. J., Sturm A. A soluble auxin-binding protein from Hyoscyamus muticus is a glutathione S-transferase. Plant Physiol. 1993 May;102(1):29–34. doi: 10.1104/pp.102.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boie Y., Adam M., Rushmore T. H., Kennedy B. P. Enantioselective activation of the peroxisome proliferator-activated receptor. J Biol Chem. 1993 Mar 15;268(8):5530–5534. [PubMed] [Google Scholar]
  5. Coles B., Ketterer B. The role of glutathione and glutathione transferases in chemical carcinogenesis. Crit Rev Biochem Mol Biol. 1990;25(1):47–70. doi: 10.3109/10409239009090605. [DOI] [PubMed] [Google Scholar]
  6. Czarnecka E., Nagao R. T., Key J. L., Gurley W. B. Characterization of Gmhsp26-A, a stress gene encoding a divergent heat shock protein of soybean: heavy-metal-induced inhibition of intron processing. Mol Cell Biol. 1988 Mar;8(3):1113–1122. doi: 10.1128/mcb.8.3.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Daniel V. Glutathione S-transferases: gene structure and regulation of expression. Crit Rev Biochem Mol Biol. 1993;28(3):173–207. doi: 10.3109/10409239309086794. [DOI] [PubMed] [Google Scholar]
  8. Dominov J. A., Stenzler L., Lee S., Schwarz J. J., Leisner S., Howell S. H. Cytokinins and auxins control the expression of a gene in Nicotiana plumbaginifolia cells by feedback regulation. Plant Cell. 1992 Apr;4(4):451–461. doi: 10.1105/tpc.4.4.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Droog F. N., Hooykaas P. J., Libbenga K. R., van der Zaal E. J. Proteins encoded by an auxin-regulated gene family of tobacco share limited but significant homology with glutathione S-transferases and one member indeed shows in vitro GST activity. Plant Mol Biol. 1993 Mar;21(6):965–972. doi: 10.1007/BF00023595. [DOI] [PubMed] [Google Scholar]
  10. Dudler R., Hertig C., Rebmann G., Bull J., Mauch F. A pathogen-induced wheat gene encodes a protein homologous to glutathione-S-transferases. Mol Plant Microbe Interact. 1991 Jan-Feb;4(1):14–18. doi: 10.1094/mpmi-4-014. [DOI] [PubMed] [Google Scholar]
  11. Fuerst E. P., Irzyk G. P., Miller K. D. Partial Characterization of Glutathione S-Transferase Isozymes Induced by the Herbicide Safener Benoxacor in Maize. Plant Physiol. 1993 Jul;102(3):795–802. doi: 10.1104/pp.102.3.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grove G., Zarlengo R. P., Timmerman K. P., Li N. Q., Tam M. F., Tu C. P. Characterization and heterospecific expression of cDNA clones of genes in the maize GSH S-transferase multigene family. Nucleic Acids Res. 1988 Jan 25;16(2):425–438. doi: 10.1093/nar/16.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
  14. Hagen G., Uhrhammer N., Guilfoyle T. J. Regulation of expression of an auxin-induced soybean sequence by cadmium. J Biol Chem. 1988 May 5;263(13):6442–6446. [PubMed] [Google Scholar]
  15. Irzyk G. P., Fuerst E. P. Purification and characterization of a glutathione S-transferase from benoxacor-treated maize (Zea mays). Plant Physiol. 1993 Jul;102(3):803–810. doi: 10.1104/pp.102.3.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Itzhaki H., Woodson W. R. Characterization of an ethylene-responsive glutathione S-transferase gene cluster in carnation. Plant Mol Biol. 1993 Apr;22(1):43–58. doi: 10.1007/BF00038994. [DOI] [PubMed] [Google Scholar]
  17. Kutchan T. M., Hochberger A. Nucleotide Sequence of a cDNA Encoding a Constitutively Expressed Glutathione S-Transferase from Cell Suspension Cultures of Silene cucubalus. Plant Physiol. 1992 Jun;99(2):789–790. doi: 10.1104/pp.99.2.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Listowsky I., Abramovitz M., Homma H., Niitsu Y. Intracellular binding and transport of hormones and xenobiotics by glutathione-S-transferases. Drug Metab Rev. 1988;19(3-4):305–318. doi: 10.3109/03602538808994138. [DOI] [PubMed] [Google Scholar]
  19. Litwack G., Ketterer B., Arias I. M. Ligandin: a hepatic protein which binds steroids, bilirubin, carcinogens and a number of exogenous organic anions. Nature. 1971 Dec 24;234(5330):466–467. doi: 10.1038/234466a0. [DOI] [PubMed] [Google Scholar]
  20. Macdonald H., Jones A. M., King P. J. Photoaffinity labeling of soluble auxin-binding proteins. J Biol Chem. 1991 Apr 25;266(12):7393–7399. [PubMed] [Google Scholar]
  21. Mannervik B., Alin P., Guthenberg C., Jensson H., Tahir M. K., Warholm M., Jörnvall H. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: correlation between structural data and enzymatic properties. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7202–7206. doi: 10.1073/pnas.82.21.7202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mannervik B., Guthenberg C. Glutathione transferase (human placenta). Methods Enzymol. 1981;77:231–235. doi: 10.1016/s0076-6879(81)77030-7. [DOI] [PubMed] [Google Scholar]
  23. Meyer D. J., Coles B., Pemble S. E., Gilmore K. S., Fraser G. M., Ketterer B. Theta, a new class of glutathione transferases purified from rat and man. Biochem J. 1991 Mar 1;274(Pt 2):409–414. doi: 10.1042/bj2740409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Meyer R. C., Jr, Goldsbrough P. B., Woodson W. R. An ethylene-responsive flower senescence-related gene from carnation encodes a protein homologous to glutathione S-transferases. Plant Mol Biol. 1991 Aug;17(2):277–281. doi: 10.1007/BF00039505. [DOI] [PubMed] [Google Scholar]
  25. Moore R. E., Davies M. S., O'Connell K. M., Harding E. I., Wiegand R. C., Tiemeier D. C. Cloning and expression of a cDNA encoding a maize glutathione-S-transferase in E. coli. Nucleic Acids Res. 1986 Sep 25;14(18):7227–7235. doi: 10.1093/nar/14.18.7227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nilsson B., Uhlén M., Josephson S., Gatenbeck S., Philipson L. An improved positive selection plasmid vector constructed by oligonucleotide mediated mutagenesis. Nucleic Acids Res. 1983 Nov 25;11(22):8019–8030. doi: 10.1093/nar/11.22.8019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pemble S. E., Taylor J. B. An evolutionary perspective on glutathione transferases inferred from class-theta glutathione transferase cDNA sequences. Biochem J. 1992 Nov 1;287(Pt 3):957–963. doi: 10.1042/bj2870957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Reinemer P., Dirr H. W., Ladenstein R., Schäffer J., Gallay O., Huber R. The three-dimensional structure of class pi glutathione S-transferase in complex with glutathione sulfonate at 2.3 A resolution. EMBO J. 1991 Aug;10(8):1997–2005. doi: 10.1002/j.1460-2075.1991.tb07729.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Takahashi Y., Kuroda H., Tanaka T., Machida Y., Takebe I., Nagata T. Isolation of an auxin-regulated gene cDNA expressed during the transition from G0 to S phase in tobacco mesophyll protoplasts. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9279–9283. doi: 10.1073/pnas.86.23.9279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Takahashi Y., Nagata T. parB: an auxin-regulated gene encoding glutathione S-transferase. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):56–59. doi: 10.1073/pnas.89.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Taylor J. L., Fritzemeier K. H., Häuser I., Kombrink E., Rohwer F., Schröder M., Strittmatter G., Hahlbrock K. Structural analysis and activation by fungal infection of a gene encoding a pathogenesis-related protein in potato. Mol Plant Microbe Interact. 1990 Mar-Apr;3(2):72–77. [PubMed] [Google Scholar]
  32. Toung Y. P., Hsieh T. S., Tu C. P. The glutathione S-transferase D genes. A divergently organized, intronless gene family in Drosophila melanogaster. J Biol Chem. 1993 May 5;268(13):9737–9746. [PubMed] [Google Scholar]
  33. Tugwood J. D., Issemann I., Anderson R. G., Bundell K. R., McPheat W. L., Green S. The mouse peroxisome proliferator activated receptor recognizes a response element in the 5' flanking sequence of the rat acyl CoA oxidase gene. EMBO J. 1992 Feb;11(2):433–439. doi: 10.1002/j.1460-2075.1992.tb05072.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vessey D. A., Boyer T. D. Differential activation and inhibition of different forms of rat liver glutathione S-transferase by the herbicides 2,4-dichlorophenoxyacetate (2,4-D) and 2,4,5-trichlorophenoxyacetate (2,4,5-T). Toxicol Appl Pharmacol. 1984 May;73(3):492–499. doi: 10.1016/0041-008x(84)90101-7. [DOI] [PubMed] [Google Scholar]
  35. Yamada T., Kaplowitz N. Binding of ethacrynic acid to hepatic glutathione S-transferases in vivo in the rat. Biochem Pharmacol. 1980 Apr 15;29(8):1205–1208. doi: 10.1016/0006-2952(80)90420-7. [DOI] [PubMed] [Google Scholar]
  36. Zhang B., Singh K. B. ocs element promoter sequences are activated by auxin and salicylic acid in Arabidopsis. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2507–2511. doi: 10.1073/pnas.91.7.2507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zhou J., Goldsbrough P. B. An Arabidopsis gene with homology to glutathione S-transferases is regulated by ethylene. Plant Mol Biol. 1993 Jun;22(3):517–523. doi: 10.1007/BF00015980. [DOI] [PubMed] [Google Scholar]
  38. van der Zaal E. J., Droog F. N., Boot C. J., Hensgens L. A., Hoge J. H., Schilperoort R. A., Libbenga K. R. Promoters of auxin-induced genes from tobacco can lead to auxin-inducible and root tip-specific expression. Plant Mol Biol. 1991 Jun;16(6):983–998. doi: 10.1007/BF00016071. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES