Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Apr;107(4):1159–1166. doi: 10.1104/pp.107.4.1159

Biogenesis and Ultrastructure of Carboxysomes from Wild Type and Mutants of Synechococcus sp. Strain PCC 7942.

M I Orus 1, M L Rodriguez 1, F Martinez 1, E Marco 1
PMCID: PMC157248  PMID: 12228422

Abstract

Immature inclusions representing three progressive steps of carboxysome biogenesis have been identified in Synechococcus during the period of adaptation to low-CO2 conditions: (a) ring-shaped structures, (b) electron-translucent inclusions with the shape of a carboxysome and the internal orderly arrangement of ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) molecules, and (c) carboxysomes with an internal electron-translucent area, which seem to be the penultimate stage of carboxysome maturation. The ability to build up normal carboxysomes is impaired in three (M3, EK6, and D4) of four high-carbon-requiring mutants studied in this work. M3 and EK6 exhibit abundant immature electron-translucent carboxysomes but no mature ones. This finding supports the contention that an open reading frame located 7.5 kb upstream of the gene encoding the large subunit of Rubisco (altered in M3) is involved in the carboxysome composition and confirms the structural role of the small subunit of Rubisco (slightly modified in EK6) in the assembly of these structures. D4 shows few typical carboxysomes and frequent immature types, its genetic lesion affecting the apparently unrelated gene encoding a subunit of phosphoribosyl aminoamidazole carboxylase of the purine biosynthesis pathway. Revertants EK20 (EK6) and RK13 (D4) have normal carboxysomes, which means that the restoration of the ability to grow under low CO2 coincides with the proper assembling of these structures. N5, a transport mutant due to the alteration of the gene encoding subunit 2 of NADH dehydrogenase, shows an increase in the number and size of carboxysomes and frequent bar-shaped ones.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Badger M. R. Kinetic properties of ribulose 1,5-bisphosphate carboxylase/oxygenase from Anabaena variabilis. Arch Biochem Biophys. 1980 Apr 15;201(1):247–254. doi: 10.1016/0003-9861(80)90509-3. [DOI] [PubMed] [Google Scholar]
  2. English R. S., Lorbach S. C., Qin X., Shively J. M. Isolation and characterization of a carboxysome shell gene from Thiobacillus neapolitanus. Mol Microbiol. 1994 May;12(4):647–654. doi: 10.1111/j.1365-2958.1994.tb01052.x. [DOI] [PubMed] [Google Scholar]
  3. Friedberg D., Kaplan A., Ariel R., Kessel M., Seijffers J. The 5'-flanking region of the gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is crucial for growth of the cyanobacterium Synechococcus sp. strain PCC 7942 at the level of CO2 in air. J Bacteriol. 1989 Nov;171(11):6069–6076. doi: 10.1128/jb.171.11.6069-6076.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fukuzawa H., Suzuki E., Komukai Y., Miyachi S. A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC7942. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4437–4441. doi: 10.1073/pnas.89.10.4437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gantt E., Conti S. F. Ultrastructure of blue-green algae. J Bacteriol. 1969 Mar;97(3):1486–1493. doi: 10.1128/jb.97.3.1486-1493.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Marco E., Martinez I., Ronen-Tarazi M., Orus M. I., Kaplan A. Inactivation of ccmO in Synechococcus sp. Strain PCC 7942 Results in a Mutant Requiring High Levels of CO(2). Appl Environ Microbiol. 1994 Mar;60(3):1018–1020. doi: 10.1128/aem.60.3.1018-1020.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Marco E., Ohad N., Schwarz R., Lieman-Hurwitz J., Gabay C., Kaplan A. High CO2 concentration alleviates the block in photosynthetic electron transport in an ndhB-inactivated mutant of Synechococcus sp. PCC 7942. Plant Physiol. 1993 Mar;101(3):1047–1053. doi: 10.1104/pp.101.3.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ogawa T., Marco E., Orus M. I. A gene (ccmA) required for carboxysome formation in the cyanobacterium Synechocystis sp. strain PCC6803. J Bacteriol. 1994 Apr;176(8):2374–2378. doi: 10.1128/jb.176.8.2374-2378.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pierce J., Carlson T. J., Williams J. G. A cyanobacterial mutant requiring the expression of ribulose bisphosphate carboxylase from a photosynthetic anaerobe. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5753–5757. doi: 10.1073/pnas.86.15.5753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Price G. D., Coleman J. R., Badger M. R. Association of Carbonic Anhydrase Activity with Carboxysomes Isolated from the Cyanobacterium Synechococcus PCC7942. Plant Physiol. 1992 Oct;100(2):784–793. doi: 10.1104/pp.100.2.784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rippka R. Isolation and purification of cyanobacteria. Methods Enzymol. 1988;167:3–27. doi: 10.1016/0076-6879(88)67004-2. [DOI] [PubMed] [Google Scholar]
  12. Schwarz R., Lieman-Hurwitz J., Hassidim M., Kaplan A. Phenotypic Complementation of High CO(2)-Requiring Mutants of the Cyanobacterium Synechococcus sp. Strain PCC 7942 by Inosine 5'-Monophosphate. Plant Physiol. 1992 Dec;100(4):1987–1993. doi: 10.1104/pp.100.4.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Yu J. W., Price G. D., Badger M. R. A Mutant Isolated from the Cyanobacterium Synechococcus PCC7942 Is Unable to Adapt to Low Inorganic Carbon Conditions. Plant Physiol. 1994 Feb;104(2):605–611. doi: 10.1104/pp.104.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES