Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Apr;107(4):1167–1175. doi: 10.1104/pp.107.4.1167

Regulation of Early Light-Inducible Protein Gene Expression by Blue and Red Light in Etiolated Seedlings Involves Nuclear and Plastid Factors.

I Adamska 1
PMCID: PMC157249  PMID: 12228423

Abstract

Early light-inducible proteins (ELIPs) are nuclear-encoded chloroplast proteins whose genes are transiently transcribed during the greening process of etiolated plants. In the present work the regulation of ELIP gene expression by blue and red light has been investigated in plumulas of etiolated pea plants (Pisum sativum). The results show that the steady-state level of ELIP transcripts is controlled by a combined action of phytochrome and blue light receptor systems and, in addition, depends on the age of the seedlings. Both a low-light fluence system of blue and a very-low-fluence system of red light are involved in ELIP induction. The threshold for accumulation of ELIP transcripts was as low as 10-5 [mu]E m-2 s-1 for both light qualities but a different pattern of accumulation was obtained in blue and in red light. Blue light not only acts at the level of transcription but also regulates the stability of the ELIP transcripts in a light intensity-dependent manner. Moreover, it is shown that product(s) of nuclear gene(s) negatively regulate the steady-state level of ELIP transcripts during the 1st h of illumination with red light. Preillumination of seedlings with white light abolishes this repression. Accumulation of ELIP transcripts requires "plastid factors" in both blue and red light qualities.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamska I., Kloppstech K., Ohad I. UV light stress induces the synthesis of the early light-inducible protein and prevents its degradation. J Biol Chem. 1992 Dec 5;267(34):24732–24737. [PubMed] [Google Scholar]
  2. Adamska I., Ohad I., Kloppstech K. Synthesis of the early light-inducible protein is controlled by blue light and related to light stress. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2610–2613. doi: 10.1073/pnas.89.7.2610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ahmad M., Cashmore A. R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature. 1993 Nov 11;366(6451):162–166. doi: 10.1038/366162a0. [DOI] [PubMed] [Google Scholar]
  4. Briggs W. R., Mösinger E., Schäfer E. Phytochrome regulation of greening in barley-effects on chlorophyll accumulation. Plant Physiol. 1988 Feb;86(2):435–440. doi: 10.1104/pp.86.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fluhr R., Chua N. H. Developmental regulation of two genes encoding ribulose-bisphosphate carboxylase small subunit in pea and transgenic petunia plants: Phytochrome response and blue-light induction. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2358–2362. doi: 10.1073/pnas.83.8.2358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gallagher T. F., Ellis R. J. Light-stimulated transcription of genes for two chloroplast polypeptides in isolated pea leaf nuclei. EMBO J. 1982;1(12):1493–1498. doi: 10.1002/j.1460-2075.1982.tb01345.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gamble P. E., Mullet J. E. Blue light regulates the accumulation of two psbD-psbC transcripts in barley chloroplasts. EMBO J. 1989 Oct;8(10):2785–2794. doi: 10.1002/j.1460-2075.1989.tb08424.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grimm B., Kruse E., Kloppstech K. Transiently expressed early light-inducible thylakoid proteins share transmembrane domains with light-harvesting chlorophyll binding proteins. Plant Mol Biol. 1989 Nov;13(5):583–593. doi: 10.1007/BF00027318. [DOI] [PubMed] [Google Scholar]
  9. Kaufman L. S., Thompson W. F., Briggs W. R. Different Red Light Requirements for Phytochrome-Induced Accumulation of cab RNA and rbcS RNA. Science. 1984 Dec 21;226(4681):1447–1449. doi: 10.1126/science.226.4681.1447. [DOI] [PubMed] [Google Scholar]
  10. Kim S., Sandusky P., Bowlby N. R., Aebersold R., Green B. R., Vlahakis S., Yocum C. F., Pichersky E. Characterization of a spinach psbS cDNA encoding the 22 kDa protein of photosystem II. FEBS Lett. 1992 Dec 7;314(1):67–71. doi: 10.1016/0014-5793(92)81463-v. [DOI] [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Marrs K. A., Kaufman L. S. Blue-light regulation of transcription for nuclear genes in pea. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4492–4495. doi: 10.1073/pnas.86.12.4492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Meyer G., Kloppstech K. A rapidly light-induced chloroplast protein with a high turnover coded for by pea nuclear DNA. Eur J Biochem. 1984 Jan 2;138(1):201–207. doi: 10.1111/j.1432-1033.1984.tb07900.x. [DOI] [PubMed] [Google Scholar]
  14. Oelmüller R., Kendrick R. E., Briggs W. R. Blue-light mediated accumulation of nuclear-encoded transcripts coding for proteins of the thylakoid membrane is absent in the phytochrome-deficient aurea mutant of tomato. Plant Mol Biol. 1989 Aug;13(2):223–232. doi: 10.1007/BF00016140. [DOI] [PubMed] [Google Scholar]
  15. Oelmüller R., Mohr H. Mode of coaction between blue/UV light and light absorbed by phytochrome in light-mediated anthocyanin formation in the milo (Sorghum vulgare Pers.) seedling. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6124–6128. doi: 10.1073/pnas.82.18.6124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Otto B., Grimm B., Ottersbach P., Kloppstech K. Circadian Control of the Accumulation of mRNAs for Light- and Heat-Inducible Chloroplast Proteins in Pea (Pisum sativum L.). Plant Physiol. 1988 Sep;88(1):21–25. doi: 10.1104/pp.88.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pötter E., Kloppstech K. Effects of light stress on the expression of early light-inducible proteins in barley. Eur J Biochem. 1993 Jun 15;214(3):779–786. doi: 10.1111/j.1432-1033.1993.tb17980.x. [DOI] [PubMed] [Google Scholar]
  18. Roberts B. E., Paterson B. M. Efficient translation of tobacco mosaic virus RNA and rabbit globin 9S RNA in a cell-free system from commercial wheat germ. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2330–2334. doi: 10.1073/pnas.70.8.2330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wedel N., Klein R., Ljungberg U., Andersson B., Herrmann R. G. The single-copy gene psbS codes for a phylogenetically intriguing 22 kDa polypeptide of photosystem II. FEBS Lett. 1992 Dec 7;314(1):61–66. doi: 10.1016/0014-5793(92)81462-u. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES