Abstract
The FAD7 gene, a gene for a chloroplast [omega]-3 fatty acid desaturase, is responsible for the trienoic fatty acid (TA) formation in leaf tissues. The TA content of the leaf tissue of the 25[deg]C-grown transgenic tobacco (Nicotiana tabacum cv SR1) plants, in which the FAD7 gene from Arabidopsis thaliana was overexpressed, increased uniformly by about 10%. Fatty acid unsaturation in all major leaf polar lipid species increased in the 25[deg]C-grown FAD7 transformants but was approximately the same between the control plants and the FAD7 transformants when grown at 15[deg]C. Therefore, the overexpression of the exogenous FAD7 gene leads to the same consequence in the tobacco plants as the low-temperature-induced TA production that may be catalyzed by an endogenous, temperature-regulated chloroplast [omega]-3 fatty acid desaturase. In the 25[deg]C-grown control plants, the chilling treatment caused symptoms of leaf chlorosis and suppression of leaf growth. The 25[deg]C-grown FAD7 transgenic plants conferred alleviation of these chilling-induced symptoms. A reductions of the chilling injury similar to that of the FAD7 transformants was also observed in the 15[deg]C-preincubated control plants. These results indicate that the increased TA production during chilling acclimation is one of the prerequisites for the normal leaf development at low, nonfreezing temperatures.
Full Text
The Full Text of this article is available as a PDF (974.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Browse J., Kunst L., Anderson S., Hugly S., Somerville C. A mutant of Arabidopsis deficient in the chloroplast 16:1/18:1 desaturase. Plant Physiol. 1989 Jun;90(2):522–529. doi: 10.1104/pp.90.2.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cabané M., Calvet P., Vincens P., Boudet A. M. Characterization of chilling-acclimation-related proteins in soybean and identification of one as a member of the heat shock protein (HSP 70) family. Planta. 1993;190(3):346–353. doi: 10.1007/BF00196963. [DOI] [PubMed] [Google Scholar]
- Gibson S., Arondel V., Iba K., Somerville C. Cloning of a temperature-regulated gene encoding a chloroplast omega-3 desaturase from Arabidopsis thaliana. Plant Physiol. 1994 Dec;106(4):1615–1621. doi: 10.1104/pp.106.4.1615. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hugly S., Somerville C. A role for membrane lipid polyunsaturation in chloroplast biogenesis at low temperature. Plant Physiol. 1992 May;99(1):197–202. doi: 10.1104/pp.99.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iba K., Gibson S., Nishiuchi T., Fuse T., Nishimura M., Arondel V., Hugly S., Somerville C. A gene encoding a chloroplast omega-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana. J Biol Chem. 1993 Nov 15;268(32):24099–24105. [PubMed] [Google Scholar]
- Khan M. U., Williams J. P. Improved thin-layer chromatographic method for the separation of major phospholipids and glycolipids from plant lipid extracts and phosphatidyl glycerol and bis(monoacylglyceryl) phosphate from animal lipid extracts. J Chromatogr. 1977 Oct 11;140(2):179–185. doi: 10.1016/s0021-9673(00)88412-5. [DOI] [PubMed] [Google Scholar]
- Kodama H., Hamada T., Horiguchi G., Nishimura M., Iba K. Genetic Enhancement of Cold Tolerance by Expression of a Gene for Chloroplast [omega]-3 Fatty Acid Desaturase in Transgenic Tobacco. Plant Physiol. 1994 Jun;105(2):601–605. doi: 10.1104/pp.105.2.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kunst L., Browse J., Somerville C. A mutant of Arabidopsis deficient in desaturation of palmitic Acid in leaf lipids. Plant Physiol. 1989 Jul;90(3):943–947. doi: 10.1104/pp.90.3.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lyons J. M., Asmundson C. M. Solidification of unsaturated/saturated fatty acid mixtures and its relationship to chilling sensitivity in plants. J Am Oil Chem Soc. 1965 Dec;42(12):1056–1058. doi: 10.1007/BF02636905. [DOI] [PubMed] [Google Scholar]
- Lyons J. M., Wheaton T. A., Pratt H. K. Relationship between the Physical Nature of Mitochondrial Membranes and Chilling Sensitivity in Plants. Plant Physiol. 1964 Mar;39(2):262–268. doi: 10.1104/pp.39.2.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McConn M., Hugly S., Browse J., Somerville C. A Mutation at the fad8 Locus of Arabidopsis Identifies a Second Chloroplast [omega]-3 Desaturase. Plant Physiol. 1994 Dec;106(4):1609–1614. doi: 10.1104/pp.106.4.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prasad T. K., Anderson M. D., Martin B. A., Stewart C. R. Evidence for Chilling-Induced Oxidative Stress in Maize Seedlings and a Regulatory Role for Hydrogen Peroxide. Plant Cell. 1994 Jan;6(1):65–74. doi: 10.1105/tpc.6.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somerville C., Browse J. Plant lipids: metabolism, mutants, and membranes. Science. 1991 Apr 5;252(5002):80–87. doi: 10.1126/science.252.5002.80. [DOI] [PubMed] [Google Scholar]
- Yadav N. S., Wierzbicki A., Aegerter M., Caster C. S., Pérez-Grau L., Kinney A. J., Hitz W. D., Booth J. R., Jr, Schweiger B., Stecca K. L. Cloning of higher plant omega-3 fatty acid desaturases. Plant Physiol. 1993 Oct;103(2):467–476. doi: 10.1104/pp.103.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]