Abstract
Strategy I plants respond to Fe deficiency by inducing morphological and biochemical modifications at the root level that are apt to make iron available for uptake. Cucumber (Cucumis sativus L.) grown in the absence of Fe has been shown to increase the capacity to acidify the rhizosphere and Fe3+ reduction activity. We have determined in these roots some metabolic activities that might be correlated with the increased proton extrusion. Proton efflux from roots may be followed by a mechanism regulating the cytosolic pH according to the pH-stat theory. Roots grown in the absence of Fe showed an increase in dark 14CO2 fixation and organic acid synthesis and a 6-fold increase in the extractable phosphoenolpyruvate carboxylase activity with respect to the control roots. Dehydrogenase activities producing cytosolic NAD(P)H were also increased under Fe deficiency. The presence of Fe2+, but not Fe3+, inhibited dark 14CO2 fixation in a range between 24 and 52% but did not show any effect on the in vitro phosphoenolpyruvate carboxylase activity.
Full Text
The Full Text of this article is available as a PDF (536.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alcántara E., de la Guardia M. D., Romera F. J. Plasmalemma redox activity and h extrusion in roots of fe-deficient cucumber plants. Plant Physiol. 1991 Aug;96(4):1034–1037. doi: 10.1104/pp.96.4.1034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chaney R. L., Brown J. C., Tiffin L. O. Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiol. 1972 Aug;50(2):208–213. doi: 10.1104/pp.50.2.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marrè M. T., Moroni A., Albergoni F. G., Marrè E. Plasmalemma redox activity and h extrusion: I. Activation of the h-pump by ferricyanide-induced potential depolarization and cytoplasm acidification. Plant Physiol. 1988 May;87(1):25–29. doi: 10.1104/pp.87.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubinstein B., Stern A. I. Relationship of Transplasmalemma Redox Activity to Proton and Solute Transport by Roots of Zea mays. Plant Physiol. 1986 Apr;80(4):805–811. doi: 10.1104/pp.80.4.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Römheld V., Müller C., Marschner H. Localization and capacity of proton pumps in roots of intact sunflower plants. Plant Physiol. 1984 Nov;76(3):603–606. doi: 10.1104/pp.76.3.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sijmons P. C., Lanfermeijer F. C., de Boer A. H., Prins H. B., Bienfait H. F. Depolarization of Cell Membrane Potential during Trans-Plasma Membrane Electron Transfer to Extracellular Electron Acceptors in Iron-Deficient Roots of Phaseolus vulgaris L. Plant Physiol. 1984 Dec;76(4):943–946. doi: 10.1104/pp.76.4.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zocchi G., Cocucci S. Fe uptake mechanism in fe-efficient cucumber roots. Plant Physiol. 1990 Apr;92(4):908–911. doi: 10.1104/pp.92.4.908. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Vos C. R., Lubberding H. J., Bienfait H. F. Rhizosphere acidification as a response to iron deficiency in bean plants. Plant Physiol. 1986 Jul;81(3):842–846. doi: 10.1104/pp.81.3.842. [DOI] [PMC free article] [PubMed] [Google Scholar]