Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Apr;107(4):1217–1223. doi: 10.1104/pp.107.4.1217

Molecular features and mitochondrial import pathway of the 14-kilodalton subunit of cytochrome c reductase from potato.

H P Braun 1, U K Schmitz 1
PMCID: PMC157255  PMID: 7770525

Abstract

The cytochrome c reductase complexes from fungi and mammals both contain a 14-kD protein (yeast, 14.4 kD; bovine, 13.4 kD) that does not directly participate in electron transfer but possibly is indirectly involved in the function of the complex and has a role in assembly of the multimeric enzyme. A subunit of comparable size was identified for the bc1 complex of higher plants. The 14-kD protein from potato (Solanum tuberosum) was specifically separated from the isolated protein complex in the presence of 6 M urea and is, therefore, assumed to be a peripheral component. Direct sequence analysis of the proteins from potato and wheat (Triticum aestivum) and isolation of corresponding cDNA clones for the subunit from potato revealed clear similarity to the equivalent proteins from yeast and bovine. The wheat 14-kD protein seems to occur in two isoforms. The 14-kD protein from plants is very hydrophilic, has a characteristic charge distribution, and contains no potential membrane-spanning helices. In vitro import of the radiolabeled 14-kD protein from potato into isolated mitochondria depends on the membrane potential across the inner mitochondrial membrane. The protein seems to lack a cleavable mitochondrial presequence, because it is not processed upon translocation. Possible intramolecular regions involved in targeting of the 14-kD protein to plant mitochondria are discussed.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berry E. A., Huang L. S., DeRose V. J. Ubiquinol-cytochrome c oxidoreductase of higher plants. Isolation and characterization of the bc1 complex from potato tuber mitochondria. J Biol Chem. 1991 May 15;266(14):9064–9077. [PubMed] [Google Scholar]
  2. Braun H. P., Emmermann M., Kruft V., Bödicker M., Schmitz U. K. The general mitochondrial processing peptidase from wheat is integrated into the cytochrome bc1-complex of the respiratory chain. Planta. 1995;195(3):396–402. doi: 10.1007/BF00202597. [DOI] [PubMed] [Google Scholar]
  3. Braun H. P., Kruft V., Schmitz U. K. Molecular identification of the ten subunits of cytochrome-c reductase from potato mitochondria. Planta. 1994;193(1):99–106. doi: 10.1007/BF00191612. [DOI] [PubMed] [Google Scholar]
  4. Braun H. P., Schmitz U. K. Affinity purification of cytochrome c reductase from potato mitochondria. Eur J Biochem. 1992 Sep 15;208(3):761–767. doi: 10.1111/j.1432-1033.1992.tb17245.x. [DOI] [PubMed] [Google Scholar]
  5. Cocco T., Lorusso M., Sardanelli A. M., Minuto M., Ronchi S., Tedeschi G., Papa S. Structural and functional characteristics of polypeptide subunits of the bovine heart ubiquinol--cytochrome-c reductase complex. Eur J Biochem. 1991 Feb 14;195(3):731–734. doi: 10.1111/j.1432-1033.1991.tb15760.x. [DOI] [PubMed] [Google Scholar]
  6. Crivellone M. D., Wu M. A., Tzagoloff A. Assembly of the mitochondrial membrane system. Analysis of structural mutants of the yeast coenzyme QH2-cytochrome c reductase complex. J Biol Chem. 1988 Oct 5;263(28):14323–14333. [PubMed] [Google Scholar]
  7. De Haan M., van Loon A. P., Kreike J., Vaessen R. T., Grivell L. A. The biosynthesis of the ubiquinol-cytochrome c reductase complex in yeast. DNA sequence analysis of the nuclear gene coding for the 14-kDa subunit. Eur J Biochem. 1984 Jan 2;138(1):169–177. doi: 10.1111/j.1432-1033.1984.tb07896.x. [DOI] [PubMed] [Google Scholar]
  8. Emmermann M., Braun H. P., Arretz M., Schmitz U. K. Characterization of the bifunctional cytochrome c reductase-processing peptidase complex from potato mitochondria. J Biol Chem. 1993 Sep 5;268(25):18936–18942. [PubMed] [Google Scholar]
  9. Emmermann M., Clericus M., Braun H. P., Mozo T., Heins L., Kruft V., Schmitz U. K. Molecular features, processing and import of the Rieske iron-sulfur protein from potato mitochondria. Plant Mol Biol. 1994 May;25(2):271–281. doi: 10.1007/BF00023243. [DOI] [PubMed] [Google Scholar]
  10. Emmermann M., Schmitz U. K. The Cytochrome c Reductase Integrated Processing Peptidase from Potato Mitochondria Belongs to a New Class of Metalloendoproteases. Plant Physiol. 1993 Oct;103(2):615–620. doi: 10.1104/pp.103.2.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grohmann L., Graack H. R., Kruft V., Choli T., Goldschmidt-Reisin S., Kitakawa M. Extended N-terminal sequencing of proteins of the large ribosomal subunit from yeast mitochondria. FEBS Lett. 1991 Jun 17;284(1):51–56. doi: 10.1016/0014-5793(91)80759-v. [DOI] [PubMed] [Google Scholar]
  12. Hemrika W., Berden J. A. Membrane topography of the subunits of ubiquinol-cytochrome-c oxidoreductase of Saccharomyces cerevisiae. The 14-kDa and the 11-kDa subunits face opposite sides of the mitochondrial inner membrane. Eur J Biochem. 1990 Sep 24;192(3):761–765. doi: 10.1111/j.1432-1033.1990.tb19287.x. [DOI] [PubMed] [Google Scholar]
  13. Hemrika W., De Jong M., Berden J. A., Grivell L. A. The C-terminus of the 14-kDa subunit of ubiquinol-cytochrome-c oxidoreductase of the yeast Saccharomyces cerevisiae is involved in the assembly of a functional enzyme. Eur J Biochem. 1994 Mar 1;220(2):569–576. doi: 10.1111/j.1432-1033.1994.tb18657.x. [DOI] [PubMed] [Google Scholar]
  14. LaMarche A. E., Abate M. I., Chan S. H., Trumpower B. L. Isolation and characterization of COX12, the nuclear gene for a previously unrecognized subunit of Saccharomyces cerevisiae cytochrome c oxidase. J Biol Chem. 1992 Nov 5;267(31):22473–22480. [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Link T. A., Schägger H., von Jagow G. Analysis of the structures of the subunits of the cytochrome bc1 complex from beef heart mitochondria. FEBS Lett. 1986 Aug 11;204(1):9–15. doi: 10.1016/0014-5793(86)81378-3. [DOI] [PubMed] [Google Scholar]
  17. Linke P., Weiss H. Reconstitution of ubiquinol-cytochrome-c reductase from Neurospora mitochondria with regard to subunits I and II. Methods Enzymol. 1986;126:201–210. doi: 10.1016/s0076-6879(86)26022-x. [DOI] [PubMed] [Google Scholar]
  18. Lorusso M., Cocco T., Boffoli D., Gatti D., Meinhardt S., Ohnishi T., Papa S. Effect of papain digestion on polypeptide subunits and electron-transfer pathways in mitochondrial b-c1 complex. Eur J Biochem. 1989 Feb 15;179(3):535–540. doi: 10.1111/j.1432-1033.1989.tb14580.x. [DOI] [PubMed] [Google Scholar]
  19. Nishikimi M., Shimomura Y., Ozawa T. Cell-free synthesis of ubiquinone-binding protein of mitochondrial cytochrome bc1 complex. Biochem Biophys Res Commun. 1986 Aug 14;138(3):1291–1297. doi: 10.1016/s0006-291x(86)80423-5. [DOI] [PubMed] [Google Scholar]
  20. Ryan M. T., Hoogenraad N. J., Høj P. B. Isolation of a cDNA clone specifying rat chaperonin 10, a stress-inducible mitochondrial matrix protein synthesised without a cleavable presequence. FEBS Lett. 1994 Jan 10;337(2):152–156. doi: 10.1016/0014-5793(94)80263-7. [DOI] [PubMed] [Google Scholar]
  21. Schleyer M., Schmidt B., Neupert W. Requirement of a membrane potential for the posttranslational transfer of proteins into mitochondria. Eur J Biochem. 1982 Jun 15;125(1):109–116. doi: 10.1111/j.1432-1033.1982.tb06657.x. [DOI] [PubMed] [Google Scholar]
  22. Schoppink P. J., Berden J. A., Grivell L. A. Inactivation of the gene encoding the 14-kDa subunit VII of yeast ubiquinol. Cytochrome c oxidoreductase and analysis of the resulting mutant. Eur J Biochem. 1989 May 1;181(2):475–483. doi: 10.1111/j.1432-1033.1989.tb14749.x. [DOI] [PubMed] [Google Scholar]
  23. Suzuki H., Hosokawa Y., Toda H., Nishikimi M., Ozawa T. Cloning and sequencing of a cDNA for human mitochondrial ubiquinone-binding protein of complex III. Biochem Biophys Res Commun. 1988 Oct 31;156(2):987–994. doi: 10.1016/s0006-291x(88)80941-0. [DOI] [PubMed] [Google Scholar]
  24. Suzuki H., Hosokawa Y., Toda H., Nishikimi M., Ozawa T. Isolation of a single nuclear gene encoding human ubiquinone-binding protein in complex III of mitochondrial respiratory chain. Biochem Biophys Res Commun. 1989 May 30;161(1):371–378. doi: 10.1016/0006-291x(89)91607-0. [DOI] [PubMed] [Google Scholar]
  25. Teintze M., Slaughter M., Weiss H., Neupert W. Biogenesis of mitochondrial ubiquinol:cytochrome c reductase (cytochrome bc1 complex). Precursor proteins and their transfer into mitochondria. J Biol Chem. 1982 Sep 10;257(17):10364–10371. [PubMed] [Google Scholar]
  26. Trumpower B. L. Cytochrome bc1 complexes of microorganisms. Microbiol Rev. 1990 Jun;54(2):101–129. doi: 10.1128/mr.54.2.101-129.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Usui S., Yu L., Harmon J., Yu C. A. Immunochemical study of subunit VI (Mr 13,400) of mitochondrial ubiquinol-cytochrome c reductase. Arch Biochem Biophys. 1991 Aug 15;289(1):109–117. doi: 10.1016/0003-9861(91)90449-s. [DOI] [PubMed] [Google Scholar]
  28. Van Loon A. P., Kreike J., De Ronde A., Van der Horst G. T., Gasser S. M., Grivell L. A. Biosynthesis of the ubiquinol-cytochrome c reductase complex in yeast. Characterization of precursor forms of the 44-kDa, 40-kDa and 17-kDa subunits and identification of individual messenger RNAs for these and other imported subunits of the complex. Eur J Biochem. 1983 Oct 3;135(3):457–463. doi: 10.1111/j.1432-1033.1983.tb07673.x. [DOI] [PubMed] [Google Scholar]
  29. Wakabayashi S., Takao T., Shimonishi Y., Kuramitsu S., Matsubara H., Wang T., Zhang Z., King T. E. Complete amino acid sequence of the ubiquinone binding protein (QP-C), a protein similar to the 14,000-dalton subunit of the yeast ubiquinol-cytochrome c reductase complex. J Biol Chem. 1985 Jan 10;260(1):337–343. [PubMed] [Google Scholar]
  30. Walker J. E., Arizmendi J. M., Dupuis A., Fearnley I. M., Finel M., Medd S. M., Pilkington S. J., Runswick M. J., Skehel J. M. Sequences of 20 subunits of NADH:ubiquinone oxidoreductase from bovine heart mitochondria. Application of a novel strategy for sequencing proteins using the polymerase chain reaction. J Mol Biol. 1992 Aug 20;226(4):1051–1072. doi: 10.1016/0022-2836(92)91052-q. [DOI] [PubMed] [Google Scholar]
  31. Weiss H., Juchs B. Isolation of a multiprotein complex containing cytochrome b and c1 from Neurospora crassa mitochondria by affinity chromatography on immobilized cytochrome c. Difference in the binding between ferricytochrome c and ferrocytochrome c to the multiprotein complex. Eur J Biochem. 1978 Jul 17;88(1):17–28. doi: 10.1111/j.1432-1033.1978.tb12418.x. [DOI] [PubMed] [Google Scholar]
  32. Weiss H., Kolb H. J. Isolation of mitochondrial succinate: ubiquinone reductase, cytochrome c reductase and cytochrome c oxidase from Neurospora crassa using nonionic detergent. Eur J Biochem. 1979 Aug 15;99(1):139–149. doi: 10.1111/j.1432-1033.1979.tb13240.x. [DOI] [PubMed] [Google Scholar]
  33. Yu C. A., Yu L. Mitochondrial ubiquinol-cytochrome c reductase complex: crystallization and protein: ubiquinone interaction. J Bioenerg Biomembr. 1993 Jun;25(3):259–273. doi: 10.1007/BF00762587. [DOI] [PubMed] [Google Scholar]
  34. Yu L., Yang F. D., Yu C. A., Tsai A. L., Palmer G. Identification of ubiquinone-binding proteins in yeast mitochondrial ubiquinol-cytochrome c reductase using an azido-ubiquinone derivative. Biochim Biophys Acta. 1986 Mar 12;848(3):305–311. doi: 10.1016/0005-2728(86)90204-5. [DOI] [PubMed] [Google Scholar]
  35. Yu L., Yu C. A. The interaction of arylazido ubiquinone derivative with mitochondrial ubiquinol-cytochrome c reductase. J Biol Chem. 1982 Sep 10;257(17):10215–10221. [PubMed] [Google Scholar]
  36. Zanlungo S., Litvak S., Jordana X. Isolation and nucleotide sequence of the potato mitochondrial gene for apocytochrome b. Plant Mol Biol. 1991 Sep;17(3):527–530. doi: 10.1007/BF00040650. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES