Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Apr;107(4):1225–1231. doi: 10.1104/pp.107.4.1225

Regulation of Nitrate Reductase during Early Seedling Growth (A Role for Asparagine and Glutamine).

S Sivasankar 1, A Oaks 1
PMCID: PMC157256  PMID: 12228428

Abstract

Growth systems that either permit (wet system) or prevent (dry system) the hydrolysis of endosperm reserves in maize (Zea mays) seedlings were developed to study the effect of endosperm reserves on the acquisition of external nitrogen. Three-day-old seedlings treated with 5 mM KNO3 for 24 h had higher levels of nitrate reductase (NR) activity and protein in shoot and root tissues in the dry relative to the wet system. This suggests that the induction of NR is sensitive to products of hydrolysis of endosperm reserves. Asparagine (1 mM) or glutamine (1 mM), potential products of that hydrolysis, inhibited the induction of NADH-dependent root NR in the dry system by about 70%. The inhibition of the induction of NR activity in the wet system was only about 35%, suggesting that the enzyme in the wet system was already partially repressed at 3 d. At 5 d, when asparagine and glutamine levels in the plant tissue had decreased, the induction of root NR activity was inhibited to a similar extent in the two growth systems by amide additions. The shoot enzyme was less sensitive to amide additions, and 10 mM concentrations of either amide was required for a 65% inhibition.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Harvey B. M., Oaks A. The Hydrolysis of Endosperm Protein in Zea mays. Plant Physiol. 1974 Mar;53(3):453–457. doi: 10.1104/pp.53.3.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Heimer Y. M., Filner P. Regulation of the nitrate assimilation pathway of cultured tobacco cells. II. Properties of a variant cell line. Biochim Biophys Acta. 1970 Jul 21;215(1):152–165. doi: 10.1016/0304-4165(70)90398-3. [DOI] [PubMed] [Google Scholar]
  3. Ingle J., Beevers L., Hageman R. H. Metabolic Changes Associated with the Germination of Corn. I. Changes in Weight and Metabolites and their Redistribution in the Embryo Axis, Scutellum, and Endosperm. Plant Physiol. 1964 Sep;39(5):735–740. doi: 10.1104/pp.39.5.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Li X. Z., Oaks A. Induction and Turnover of Nitrate Reductase in Zea mays (Influence of NO3-). Plant Physiol. 1993 Aug;102(4):1251–1257. doi: 10.1104/pp.102.4.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Long D. M., Oaks A. Stabilization of nitrate reductase in maize roots by chymostatin. Plant Physiol. 1990 Jul;93(3):846–850. doi: 10.1104/pp.93.3.846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Oaks A., Beevers H. The Requirement for Organic Nitrogen in Zea mays Embryos. Plant Physiol. 1964 Jan;39(1):37–43. doi: 10.1104/pp.39.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Oaks A. The regulation of nitrate reductase in suspension cultures of soybean cells. Biochim Biophys Acta. 1974 Nov 4;372(1):122–126. doi: 10.1016/0304-4165(74)90078-6. [DOI] [PubMed] [Google Scholar]
  8. Premakumar R., Sorger G. J., Gooden D. Repression of nitrate reductase in Neurospora studied by using L-methionine-DL-sulfoximine and glutamine auxotroph gln-1b. J Bacteriol. 1980 Jul;143(1):411–415. doi: 10.1128/jb.143.1.411-415.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Vincentz M., Moureaux T., Leydecker M. T., Vaucheret H., Caboche M. Regulation of nitrate and nitrite reductase expression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites. Plant J. 1993 Feb;3(2):315–324. doi: 10.1111/j.1365-313x.1993.tb00183.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES