Abstract
An elicitor prepared from the autoclaved cell walls of Phytophthora sp. induced O2- generation and H2O2 accumulation by cultured cells of Rosa damascena Mill. cv Gloire de Guilan. N,N-Diethyldithiocarbamate, a superoxide dismutase inhibitior, blocked H2O2 accumulation and caused a dramatic accumulation of O2- by elicitor-treated rose cells. In the absence of N,N-diethyldithiocarbamate no detectable O2- was accumulated. Diphenyleneiodonium, quinacrine, pyridine, and imidazole, inhibitors of the mammalian neutrophil NADPH oxidase responsible for the generation of O2- during phagocytosis, inhibited O2- generation by elicitor-treated rose cells. Diphenyleneiodonium also inhibited NADH-dependent O2- production by plasma membranes isolated from rose cells. None of the four compounds inhibited the peroxidase activity in the cell-suspension medium. These results demonstrate that elicitor-stimulated accumulation of H2O2 comes only from superoxide dismutase-catalyzed dismutation of O2-. The data are inconsistent with the hypothesis that the synthesis of O2- is catalyzed by extracellular peroxidase and suggest that the enzyme responsible for the synthesis of O2- by elicitor-treated rose cells might be similar to the mammalian neutrophil NADPH oxidase.
Full Text
The Full Text of this article is available as a PDF (723.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apostol I., Heinstein P. F., Low P. S. Rapid Stimulation of an Oxidative Burst during Elicitation of Cultured Plant Cells : Role in Defense and Signal Transduction. Plant Physiol. 1989 May;90(1):109–116. doi: 10.1104/pp.90.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ayers A. R., Ebel J., Valent B., Albersheim P. Host-Pathogen Interactions: X. Fractionation and Biological Activity of an Elicitor Isolated from the Mycelial Walls of Phytophthora megasperma var. sojae. Plant Physiol. 1976 May;57(5):760–765. doi: 10.1104/pp.57.5.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bienfait H. F. Regulated redox processes at the plasmalemma of plant root cells and their function in iron uptake. J Bioenerg Biomembr. 1985 Apr;17(2):73–83. doi: 10.1007/BF00744199. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Bradley D. J., Kjellbom P., Lamb C. J. Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell. 1992 Jul 10;70(1):21–30. doi: 10.1016/0092-8674(92)90530-p. [DOI] [PubMed] [Google Scholar]
- Brisson L. F., Tenhaken R., Lamb C. Function of Oxidative Cross-Linking of Cell Wall Structural Proteins in Plant Disease Resistance. Plant Cell. 1994 Dec;6(12):1703–1712. doi: 10.1105/tpc.6.12.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castillo F. J., Penel C., Greppin H. Peroxidase Release Induced by Ozone in Sedum album Leaves: Involvement of Ca. Plant Physiol. 1984 Apr;74(4):846–851. doi: 10.1104/pp.74.4.846. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corbisier P., Houbion A., Remacle J. A new technique for highly sensitive detection of superoxide dismutase activity by chemiluminescence. Anal Biochem. 1987 Jul;164(1):240–247. doi: 10.1016/0003-2697(87)90392-7. [DOI] [PubMed] [Google Scholar]
- Cross A. R., Jones O. T. Enzymic mechanisms of superoxide production. Biochim Biophys Acta. 1991 May 6;1057(3):281–298. doi: 10.1016/s0005-2728(05)80140-9. [DOI] [PubMed] [Google Scholar]
- Cross A. R., Jones O. T. The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils. Specific labelling of a component polypeptide of the oxidase. Biochem J. 1986 Jul 1;237(1):111–116. doi: 10.1042/bj2370111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devlin W. S., Gustine D. L. Involvement of the oxidative burst in phytoalexin accumulation and the hypersensitive reaction. Plant Physiol. 1992 Nov;100(3):1189–1195. doi: 10.1104/pp.100.3.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harkin J. M., Obst J. R. Lignification in trees: indication of exclusive peroxidase participation. Science. 1973 Apr 20;180(4083):296–298. doi: 10.1126/science.180.4083.296. [DOI] [PubMed] [Google Scholar]
- Iizuka T., Kanegasaki S., Makino R., Tanaka T., Ishimura Y. Pyridine and imidazole reversibly inhibit the respiratory burst in porcine and human neutrophils: evidence for the involvement of cytochrome b558 in the reaction. Biochem Biophys Res Commun. 1985 Jul 31;130(2):621–626. doi: 10.1016/0006-291x(85)90462-0. [DOI] [PubMed] [Google Scholar]
- Legendre L., Rueter S., Heinstein P. F., Low P. S. Characterization of the Oligogalacturonide-Induced Oxidative Burst in Cultured Soybean (Glycine max) Cells. Plant Physiol. 1993 May;102(1):233–240. doi: 10.1104/pp.102.1.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine A., Tenhaken R., Dixon R., Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell. 1994 Nov 18;79(4):583–593. doi: 10.1016/0092-8674(94)90544-4. [DOI] [PubMed] [Google Scholar]
- Mehdy M. C. Active Oxygen Species in Plant Defense against Pathogens. Plant Physiol. 1994 Jun;105(2):467–472. doi: 10.1104/pp.105.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mäder M., Füssl R. Role of Peroxidase in Lignification of Tobacco Cells : II. Regulation by Phenolic Compounds. Plant Physiol. 1982 Oct;70(4):1132–1134. doi: 10.1104/pp.70.4.1132. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vera-Estrella R., Blumwald E., Higgins V. J. Effect of Specific Elicitors of Cladosporium fulvum on Tomato Suspension Cells : Evidence for the Involvement of Active Oxygen Species. Plant Physiol. 1992 Jul;99(3):1208–1215. doi: 10.1104/pp.99.3.1208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vianello A., Macrì F. Generation of superoxide anion and hydrogen peroxide at the surface of plant cells. J Bioenerg Biomembr. 1991 Jun;23(3):409–423. doi: 10.1007/BF00771012. [DOI] [PubMed] [Google Scholar]
- Vianello A., Macrì F. NAD(P)H oxidation elicits anion superoxide formation in radish plasmalemma vesicles. Biochim Biophys Acta. 1989 Apr 14;980(2):202–208. doi: 10.1016/0005-2736(89)90400-8. [DOI] [PubMed] [Google Scholar]