Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Apr;107(4):1303–1311. doi: 10.1104/pp.107.4.1303

Expression of NADH-Specific and NAD(P)H-Bispecific Nitrate Reductase Genes in Response to Nitrate in Barley.

K Sueyoshi 1, A Kleinhofs 1, R L Warner 1
PMCID: PMC157265  PMID: 12228437

Abstract

Barley (Hordeum vulgare L.) has two, differentially regulated, nitrate reductase (NR) genes, one encoding the NADH-specific NR (Nar1) and the other encoding the NAD(P)H-bispecific NR (Nar7). Regulation of the two NR genes by nitrate was investigated in wild-type Steptoe and in an NADH-specific NR structural gene mutant (Az12). Gene-specific probes were used to estimate NADH and NAD(P)H NR mRNAs. The kinetics of induction by nitrate were similar for the two NR genes; expression was generally below the limits of detection prior to induction, reached maximum levels after 1 to 2 h of induction in roots and 4 to 8 h of induction in leaves, and then declined to steady-state levels. Derepression of the NAD(P)H NR gene in leaves of the NADH-specific NR gene mutant Az12 did not appear to be associated with changes in nitrate assimilation products or nitrate flux. Nitrate deprivation resulted in rapid decreases in NADH and NAD(P)H NR mRNAs in seedling roots and leaves and equally rapid decreases in the concentration of nitrate in the xylem sap. These results indicate that factors affecting nitrate uptake and transport could have a direct influence on NR expression in barley leaves.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aslam M., Huffaker R. C. Dependency of Nitrate Reduction on Soluble Carbohydrates in Primary Leaves of Barley under Aerobic Conditions. Plant Physiol. 1984 Jul;75(3):623–628. doi: 10.1104/pp.75.3.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Calza R, Huttner E, Vincentz M, Rouzé P, Galangau F, Vaucheret H, Chérel I, Meyer C, Kronenberger J, Caboche M. Cloning of DNA fragments complementary to tobacco nitrate reductase mRNA and encoding epitopes common to the nitrate reductases from higher plants. Mol Gen Genet. 1987 Oct;209(3):552–562. doi: 10.1007/BF00331162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chang C., Kwok S. F., Bleecker A. B., Meyerowitz E. M. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science. 1993 Oct 22;262(5133):539–544. doi: 10.1126/science.8211181. [DOI] [PubMed] [Google Scholar]
  4. Cheng C. L., Acedo G. N., Cristinsin M., Conkling M. A. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1861–1864. doi: 10.1073/pnas.89.5.1861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cheng C. L., Acedo G. N., Dewdney J., Goodman H. M., Conkling M. A. Differential expression of the two Arabidopsis nitrate reductase genes. Plant Physiol. 1991 May;96(1):275–279. doi: 10.1104/pp.96.1.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cheng C. L., Dewdney J., Kleinhofs A., Goodman H. M. Cloning and nitrate induction of nitrate reductase mRNA. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6825–6828. doi: 10.1073/pnas.83.18.6825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Crawford N. M., Campbell W. H., Davis R. W. Nitrate reductase from squash: cDNA cloning and nitrate regulation. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8073–8076. doi: 10.1073/pnas.83.21.8073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dailey F. A., Kuo T., Warner R. L. Pyridine nucleotide specificity of barley nitrate reductase. Plant Physiol. 1982 May;69(5):1196–1199. doi: 10.1104/pp.69.5.1196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fu Y. H., Kneesi J. Y., Marzluf G. A. Isolation of nit-4, the minor nitrogen regulatory gene which mediates nitrate induction in Neurospora crassa. J Bacteriol. 1989 Jul;171(7):4067–4070. doi: 10.1128/jb.171.7.4067-4070.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Galangau F., Daniel-Vedele F., Moureaux T., Dorbe M. F., Leydecker M. T., Caboche M. Expression of leaf nitrate reductase genes from tomato and tobacco in relation to light-dark regimes and nitrate supply. Plant Physiol. 1988 Oct;88(2):383–388. doi: 10.1104/pp.88.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gowri G., Campbell W. H. cDNA Clones for Corn Leaf NADH:Nitrate Reductase and Chloroplast NAD(P):Glyceraldehyde-3-Phosphate Dehydrogenase : Characterization of the Clones and Analysis of the Expression of the Genes in Leaves as Influenced by Nitrate in the Light and Dark. Plant Physiol. 1989 Jul;90(3):792–798. doi: 10.1104/pp.90.3.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gunsalus R. P., Kalman L. V., Stewart R. R. Nucleotide sequence of the narL gene that is involved in global regulation of nitrate controlled respiratory genes of Escherichia coli. Nucleic Acids Res. 1989 Mar 11;17(5):1965–1975. doi: 10.1093/nar/17.5.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kramer V., Lahners K., Back E., Privalle L. S., Rothstein S. Transient Accumulation of Nitrite Reductase mRNA in Maize following the Addition of Nitrate. Plant Physiol. 1989 Jul;90(3):1214–1220. doi: 10.1104/pp.90.3.1214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Li X. Z., Oaks A. Induction and Turnover of Nitrate Reductase in Zea mays (Influence of NO3-). Plant Physiol. 1993 Aug;102(4):1251–1257. doi: 10.1104/pp.102.4.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Miyazaki J., Juricek M., Angelis K., Schnorr K. M., Kleinhofs A., Warner R. L. Characterization and sequence of a novel nitrate reductase from barley. Mol Gen Genet. 1991 Sep;228(3):329–334. doi: 10.1007/BF00260624. [DOI] [PubMed] [Google Scholar]
  18. Rufty T. W., Mackown C. T., Volk R. J. Effects of Altered Carbohydrate Availability on Whole-Plant Assimilation of NO(3). Plant Physiol. 1989 Feb;89(2):457–463. doi: 10.1104/pp.89.2.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Siddiqi M. Y., Glass A. D., Ruth T. J., Fernando M. Studies of the Regulation of Nitrate Influx by Barley Seedlings Using NO(3). Plant Physiol. 1989 Jul;90(3):806–813. doi: 10.1104/pp.90.3.806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Somers D. A., Kuo T. M., Kleinhofs A., Warner R. L. Nitrate reductase-deficient mutants in barley : immunoelectrophoretic characterization. Plant Physiol. 1983 Jan;71(1):145–149. doi: 10.1104/pp.71.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Somers D. A., Kuo T. M., Kleinhofs A., Warner R. L., Oaks A. Synthesis and degradation of barley nitrate reductase. Plant Physiol. 1983 Aug;72(4):949–952. doi: 10.1104/pp.72.4.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Thayer J. R., Huffaker R. C. Determination of nitrate and nitrite by high-pressure liquid chromatography: comparison with other methods for nitrate determination. Anal Biochem. 1980 Feb;102(1):110–119. doi: 10.1016/0003-2697(80)90325-5. [DOI] [PubMed] [Google Scholar]
  23. Tomino Y., Sakai H., Woodroffe A. J., Clarkson A. R. Studies on glomerular immune solubilization by complement in patients with IgA nephropathy. Acta Pathol Jpn. 1987 Nov;37(11):1763–1767. doi: 10.1111/j.1440-1827.1987.tb02869.x. [DOI] [PubMed] [Google Scholar]
  24. Vincentz M., Moureaux T., Leydecker M. T., Vaucheret H., Caboche M. Regulation of nitrate and nitrite reductase expression in Nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites. Plant J. 1993 Feb;3(2):315–324. doi: 10.1111/j.1365-313x.1993.tb00183.x. [DOI] [PubMed] [Google Scholar]
  25. Warner R. L., Huffaker R. C. Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings. Plant Physiol. 1989;91:947–953. doi: 10.1104/pp.91.3.947. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES