Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Apr;107(4):1323–1332. doi: 10.1104/pp.107.4.1323

Maize ribosome-inactivating protein (b-32). Homologs in related species, effects on maize ribosomes, and modulation of activity by pro-peptide deletions.

T D Hey 1, M Hartley 1, T A Walsh 1
PMCID: PMC157267  PMID: 7770526

Abstract

The ribosome-inactivating protein (RIP) from maize (Zea mays L.) is unusual in that it is produced in the endosperm as an inactive pro-form, also known as b-32, which can be converted by limited proteolysis to a two-chain active form, alpha beta RIP. Immunological analysis of seed extracts from a variety of species related to maize showed that pro/alpha beta forms of RIP are not unique to maize but are also found in other members of the Panicoideae, including Tripsacum and sorghum. Ribosomes isolated from maize were quite resistant to both purified pro- and alpha beta maize RIPs, whereas they were highly susceptible to the RIP from pokeweed. This suggests that the production of an inactive pro-RIP is not a mechanism to protect the plant's own ribosomes from deleterious action of the alpha beta RIP. RIP derivatives with various pro-segments removed were expressed at high levels in Escherichia coli. Measurement of their activity before and after treatment with subtilisin Carlsberg clearly identified the 25-amino acid intradomain insertion, rather than the N- or C-terminal extensions, as the major element responsible for suppression of enzymatic activity. A RIP with all three processed regions deleted had activity close to that of the native alpha beta form.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bass H. W., Webster C., OBrian G. R., Roberts J. K., Boston R. S. A maize ribosome-inactivating protein is controlled by the transcriptional activator Opaque-2. Plant Cell. 1992 Feb;4(2):225–234. doi: 10.1105/tpc.4.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bonness M. S., Ready M. P., Irvin J. D., Mabry T. J. Pokeweed antiviral protein inactivates pokeweed ribosomes; implications for the antiviral mechanism. Plant J. 1994 Feb;5(2):173–183. doi: 10.1046/j.1365-313x.1994.05020173.x. [DOI] [PubMed] [Google Scholar]
  3. Brigotti M., Sperti S., Carnicelli D., Montanaro L. Partial purification of two proteins which sensitize ribosomes to gelonin: sensitization is not linked to phosphorylation of ribosomal proteins. Toxicon. 1993 Aug;31(8):989–996. doi: 10.1016/0041-0101(93)90258-k. [DOI] [PubMed] [Google Scholar]
  4. Carnicelli D., Brigotti M., Montanaro L., Sperti S. Differential requirement of ATP and extra-ribosomal proteins for ribosome inactivation by eight RNA N-glycosidases. Biochem Biophys Res Commun. 1992 Jan 31;182(2):579–582. doi: 10.1016/0006-291x(92)91771-h. [DOI] [PubMed] [Google Scholar]
  5. Chait B. T., Kent S. B. Weighing naked proteins: practical, high-accuracy mass measurement of peptides and proteins. Science. 1992 Sep 25;257(5078):1885–1894. doi: 10.1126/science.1411504. [DOI] [PubMed] [Google Scholar]
  6. Chow T. P., Feldman R. A., Lovett M., Piatak M. Isolation and DNA sequence of a gene encoding alpha-trichosanthin, a type I ribosome-inactivating protein. J Biol Chem. 1990 May 25;265(15):8670–8674. [PubMed] [Google Scholar]
  7. Coleman W. H., Roberts W. K. Factor requirements for the tritin inactivation of animal cell ribosomes. Biochim Biophys Acta. 1981 Jun 26;654(1):57–66. doi: 10.1016/0005-2787(81)90136-2. [DOI] [PubMed] [Google Scholar]
  8. Endo Y., Mitsui K., Motizuki M., Tsurugi K. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J Biol Chem. 1987 Apr 25;262(12):5908–5912. [PubMed] [Google Scholar]
  9. Endo Y., Tsurugi K., Lambert J. M. The site of action of six different ribosome-inactivating proteins from plants on eukaryotic ribosomes: the RNA N-glycosidase activity of the proteins. Biochem Biophys Res Commun. 1988 Feb 15;150(3):1032–1036. doi: 10.1016/0006-291x(88)90733-4. [DOI] [PubMed] [Google Scholar]
  10. Endo Y., Tsurugi K. RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J Biol Chem. 1987 Jun 15;262(17):8128–8130. [PubMed] [Google Scholar]
  11. Ferreras J. M., Barbieri L., Girbés T., Battelli M. G., Rojo M. A., Arias F. J., Rocher M. A., Soriano F., Mendéz E., Stirpe F. Distribution and properties of major ribosome-inactivating proteins (28 S rRNA N-glycosidases) of the plant Saponaria officinalis L. (Caryophyllaceae). Biochim Biophys Acta. 1993 Oct 19;1216(1):31–42. doi: 10.1016/0167-4781(93)90034-b. [DOI] [PubMed] [Google Scholar]
  12. Fordham-Skelton A. P., Taylor P. N., Hartley M. R., Croy R. R. Characterisation of saporin genes: in vitro expression and ribosome inactivation. Mol Gen Genet. 1991 Oct;229(3):460–466. doi: 10.1007/BF00267470. [DOI] [PubMed] [Google Scholar]
  13. Frankel A., Welsh P., Richardson J., Robertus J. D. Role of arginine 180 and glutamic acid 177 of ricin toxin A chain in enzymatic inactivation of ribosomes. Mol Cell Biol. 1990 Dec;10(12):6257–6263. doi: 10.1128/mcb.10.12.6257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Girbés T., Barbieri L., Ferreras M., Arias F. J., Rojo M. A., Iglesias R., Alegre C., Escarmis C., Stirpe F. Effects of ribosome-inactivating proteins on Escherichia coli and Agrobacterium tumefaciens translation systems. J Bacteriol. 1993 Oct;175(20):6721–6724. doi: 10.1128/jb.175.20.6721-6724.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Girbés T., Citores L., Iglesias R., Ferreras J. M., Muñoz R., Rojo M. A., Arias F. J., García J. R., Méndez E., Calonge M. Ebulin 1, a nontoxic novel type 2 ribosome-inactivating protein from Sambucus ebulus L. leaves. J Biol Chem. 1993 Aug 25;268(24):18195–18199. [PubMed] [Google Scholar]
  16. Gould J. H., Hartley M. R., Welsh P. C., Hoshizaki D. K., Frankel A., Roberts L. M., Lord J. M. Alteration of an amino acid residue outside the active site of the ricin A chain reduces its toxicity towards yeast ribosomes. Mol Gen Genet. 1991 Nov;230(1-2):81–90. doi: 10.1007/BF00290654. [DOI] [PubMed] [Google Scholar]
  17. Habuka N., Akiyama K., Tsuge H., Miyano M., Matsumoto T., Noma M. Expression and secretion of Mirabilis antiviral protein in Escherichia coli and its inhibition of in vitro eukaryotic and prokaryotic protein synthesis. J Biol Chem. 1990 Jul 5;265(19):10988–10992. [PubMed] [Google Scholar]
  18. Habuka N., Kataoka J., Miyano M., Tsuge H., Ago H., Noma M. Nucleotide sequence of a genomic gene encoding tritin, a ribosome-inactivating protein from Triticum aestivum. Plant Mol Biol. 1993 Apr;22(1):171–176. doi: 10.1007/BF00039007. [DOI] [PubMed] [Google Scholar]
  19. Hartings H., Lazzaroni N., Marsan P. A., Aragay A., Thompson R., Salamini F., Di Fonzo N., Palau J., Motto M. The b-32 protein from maize endosperm: characterization of genomic sequences encoding two alternative central domains. Plant Mol Biol. 1990 Jun;14(6):1031–1040. doi: 10.1007/BF00019399. [DOI] [PubMed] [Google Scholar]
  20. Hartley M. R., Legname G., Osborn R., Chen Z., Lord J. M. Single-chain ribosome inactivating proteins from plants depurinate Escherichia coli 23S ribosomal RNA. FEBS Lett. 1991 Sep 23;290(1-2):65–68. doi: 10.1016/0014-5793(91)81227-y. [DOI] [PubMed] [Google Scholar]
  21. Ho W. K., Liu S. C., Shaw P. C., Yeung H. W., Ng T. B., Chan W. Y. Cloning of the cDNA of alpha-momorcharin: a ribosome inactivating protein. Biochim Biophys Acta. 1991 Feb 16;1088(2):311–314. doi: 10.1016/0167-4781(91)90070-3. [DOI] [PubMed] [Google Scholar]
  22. Ippoliti R., Lendaro E., Bellelli A., Brunori M. A ribosomal protein is specifically recognized by saporin, a plant toxin which inhibits protein synthesis. FEBS Lett. 1992 Feb 24;298(2-3):145–148. doi: 10.1016/0014-5793(92)80042-f. [DOI] [PubMed] [Google Scholar]
  23. Jackson A. O., Larkins B. A. Influence of Ionic Strength, pH, and Chelation of Divalent Metals on Isolation of Polyribosomes from Tobacco Leaves. Plant Physiol. 1976 Jan;57(1):5–10. doi: 10.1104/pp.57.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kataoka J., Habuka N., Furuno M., Miyano M., Takanami Y., Koiwai A. DNA sequence of Mirabilis antiviral protein (MAP), a ribosome-inactivating protein with an antiviral property, from mirabilis jalapa L. and its expression in Escherichia coli. J Biol Chem. 1991 May 5;266(13):8426–8430. [PubMed] [Google Scholar]
  25. Kataoka J., Habuka N., Masuta C., Miyano M., Koiwai A. Isolation and analysis of a genomic clone encoding a pokeweed antiviral protein. Plant Mol Biol. 1992 Dec;20(5):879–886. doi: 10.1007/BF00027159. [DOI] [PubMed] [Google Scholar]
  26. Katzin B. J., Collins E. J., Robertus J. D. Structure of ricin A-chain at 2.5 A. Proteins. 1991;10(3):251–259. doi: 10.1002/prot.340100309. [DOI] [PubMed] [Google Scholar]
  27. Leah R., Tommerup H., Svendsen I., Mundy J. Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem. 1991 Jan 25;266(3):1564–1573. [PubMed] [Google Scholar]
  28. Legname G., Bellosta P., Gromo G., Modena D., Keen J. N., Roberts L. M., Lord J. M. Nucleotide sequence of cDNA coding for dianthin 30, a ribosome inactivating protein from Dianthus caryophyllus. Biochim Biophys Acta. 1991 Aug 27;1090(1):119–122. doi: 10.1016/0167-4781(91)90046-o. [DOI] [PubMed] [Google Scholar]
  29. Lin Q., Chen Z. C., Antoniw J. F., White R. F. Isolation and characterization of a cDNA clone encoding the anti-viral protein from Phytolacca americana. Plant Mol Biol. 1991 Oct;17(4):609–614. doi: 10.1007/BF00037047. [DOI] [PubMed] [Google Scholar]
  30. Lodge J. K., Kaniewski W. K., Tumer N. E. Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7089–7093. doi: 10.1073/pnas.90.15.7089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lohmer S., Maddaloni M., Motto M., Di Fonzo N., Hartings H., Salamini F., Thompson R. D. The maize regulatory locus Opaque-2 encodes a DNA-binding protein which activates the transcription of the b-32 gene. EMBO J. 1991 Mar;10(3):617–624. doi: 10.1002/j.1460-2075.1991.tb07989.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Neurath H. Proteolytic processing and physiological regulation. Trends Biochem Sci. 1989 Jul;14(7):268–271. doi: 10.1016/0968-0004(89)90061-3. [DOI] [PubMed] [Google Scholar]
  33. Nolan P. A., Garrison D. A., Better M. Cloning and expression of a gene encoding gelonin, a ribosome-inactivating protein from Gelonium multiflorum. Gene. 1993 Dec 8;134(2):223–227. doi: 10.1016/0378-1119(93)90097-m. [DOI] [PubMed] [Google Scholar]
  34. Reinbothe S., Reinbothe C., Lehmann J., Becker W., Apel K., Parthier B. JIP60, a methyl jasmonate-induced ribosome-inactivating protein involved in plant stress reactions. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):7012–7016. doi: 10.1073/pnas.91.15.7012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Roberts W. K., Stewart T. S. Purification and properties of a translation inhibitor from wheat germ. Biochemistry. 1979 Jun 12;18(12):2615–2621. doi: 10.1021/bi00579a028. [DOI] [PubMed] [Google Scholar]
  36. Sperti S., Brigotti M., Zamboni M., Carnicelli D., Montanaro L. Requirements for the inactivation of ribosomes by gelonin. Biochem J. 1991 Jul 1;277(Pt 1):281–284. doi: 10.1042/bj2770281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stirpe F., Barbieri L., Battelli M. G., Soria M., Lappi D. A. Ribosome-inactivating proteins from plants: present status and future prospects. Biotechnology (N Y) 1992 Apr;10(4):405–412. doi: 10.1038/nbt0492-405. [DOI] [PubMed] [Google Scholar]
  38. Taylor B. E., Irvin J. D. Depurination of plant ribosomes by pokeweed antiviral protein. FEBS Lett. 1990 Oct 29;273(1-2):144–146. doi: 10.1016/0014-5793(90)81070-5. [DOI] [PubMed] [Google Scholar]
  39. Walsh T. A., Morgan A. E., Hey T. D. Characterization and molecular cloning of a proenzyme form of a ribosome-inactivating protein from maize. Novel mechanism of proenzyme activation by proteolytic removal of a 2.8-kilodalton internal peptide segment. J Biol Chem. 1991 Dec 5;266(34):23422–23427. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES