Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 May;108(1):17–27. doi: 10.1104/pp.108.1.17

Pathogenesis-related PR-1 proteins are antifungal. Isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans.

T Niderman 1, I Genetet 1, T Bruyère 1, R Gees 1, A Stintzi 1, M Legrand 1, B Fritig 1, E Mösinger 1
PMCID: PMC157301  PMID: 7784503

Abstract

Three distinct basic 14-kD proteins, P14a, P14b, and P14c, were isolated from tomato (Lycopersicon esculentum Mill. cv Baby) leaves infected with Phytophthora infestans. They exhibited antifungal activity against P. infestans both in vitro (inhibition of zoospore germination) and in vivo with a tomato leaf disc assay (decrease in infected leaf surface). Serological cross-reactions and amino acid sequence comparisons showed that the three proteins are members of the PR-1 group of pathogenesis-related (PR) proteins. P14a and P14b showed high similarity to a previously characterized P14, whereas P14c was found to be very similar to a putative basic-type PR-1 from tobacco predicted from isolated DNA clones. This protein, named PR-1 g, was purified from virus-infected tobacco (Nicotiana tabacum Samsun NN) leaves and characterized by amino acid microsequencing, along with the well-known acidic tobacco PR-1a, PR-1b, and PR-1c. The various tomato and tobacco PR-1 proteins were compared for their biological activity and found to display differential fungicidal activity against P. infestans in both the in vitro and in vivo assays, the most efficient being the newly characterized tomato P14c and tobacco PR-1g.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander D., Goodman R. M., Gut-Rella M., Glascock C., Weymann K., Friedrich L., Maddox D., Ahl-Goy P., Luntz T., Ward E. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7327–7331. doi: 10.1073/pnas.90.15.7327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Brederode F. T., Linthorst H. J., Bol J. F. Differential induction of acquired resistance and PR gene expression in tobacco by virus infection, ethephon treatment, UV light and wounding. Plant Mol Biol. 1991 Dec;17(6):1117–1125. doi: 10.1007/BF00028729. [DOI] [PubMed] [Google Scholar]
  4. Camacho Henriquez A., Sänger H. L. Analysis of acid-extractable tomato leaf proteins after infection with a viroid, two viruses and a fungus and partial purification of the "pathogenesis-related" protein p 14. Arch Virol. 1982;74(2-3):181–196. doi: 10.1007/BF01314711. [DOI] [PubMed] [Google Scholar]
  5. Camacho Henriquez A., Sänger H. L. Purification and partial characterization of the major "pathogenesis-related" tomato leaf protein P14 from potato spindle tuber viroid (PSTV)-infected tomato leaves. Arch Virol. 1984;81(3-4):263–284. doi: 10.1007/BF01309998. [DOI] [PubMed] [Google Scholar]
  6. Cornelissen B. J., Horowitz J., van Kan J. A., Goldberg R. B., Bol J. F. Structure of tobacco genes encoding pathogenesis-related proteins from the PR-1 group. Nucleic Acids Res. 1987 Sep 11;15(17):6799–6811. doi: 10.1093/nar/15.17.6799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cutt J. R., Harpster M. H., Dixon D. C., Carr J. P., Dunsmuir P., Klessig D. F. Disease response to tobacco mosaic virus in transgenic tobacco plants that constitutively express the pathogenesis-related PR1b gene. Virology. 1989 Nov;173(1):89–97. doi: 10.1016/0042-6822(89)90224-9. [DOI] [PubMed] [Google Scholar]
  8. Eyal Y., Meller Y., Lev-Yadun S., Fluhr R. A basic-type PR-1 promoter directs ethylene responsiveness, vascular and abscission zone-specific expression. Plant J. 1993 Aug;4(2):225–234. doi: 10.1046/j.1365-313x.1993.04020225.x. [DOI] [PubMed] [Google Scholar]
  9. Eyal Y., Sagee O., Fluhr R. Dark-induced accumulation of a basic pathogenesis-related (PR-1) transcript and a light requirement for its induction by ethylene. Plant Mol Biol. 1992 Jul;19(4):589–599. doi: 10.1007/BF00026785. [DOI] [PubMed] [Google Scholar]
  10. Geoffroy P., Legrand M., Fritig B. Isolation and characterization of a proteinaceous inhibitor of microbial proteinases induced during the hypersensitive reaction of tobacco to tobacco mosaic virus. Mol Plant Microbe Interact. 1990 Sep-Oct;3(5):327–333. doi: 10.1094/mpmi-3-327. [DOI] [PubMed] [Google Scholar]
  11. Gianinazzi S., Martin C., Vallée J. C. Hypersensibilité aux virus, température et protéines soubles chez le Nicotiana Xanthi n.c. Apparition de nouvelles macromolécules lors de la répression de la synthèse virale. C R Acad Sci Hebd Seances Acad Sci D. 1970 May 11;270(19):2383–2386. [PubMed] [Google Scholar]
  12. Heitz T., Geoffroy P., Fritig B., Legrand M. Two Apoplastic alpha-Amylases Are Induced in Tobacco by Virus Infection. Plant Physiol. 1991 Oct;97(2):651–656. doi: 10.1104/pp.97.2.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hejgaard J., Jacobsen S., Svendsen I. Two antifungal thaumatin-like proteins from barley grain. FEBS Lett. 1991 Oct 7;291(1):127–131. doi: 10.1016/0014-5793(91)81119-s. [DOI] [PubMed] [Google Scholar]
  14. Joosten M. H., Bergmans C. J., Meulenhoff E. J., Cornelissen B. J., De Wit P. J. Purification and serological characterization of three basic 15-kilodalton pathogenesis-related proteins from tomato. Plant Physiol. 1990 Oct;94(2):585–591. doi: 10.1104/pp.94.2.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Joosten M. H., De Wit P. J. Identification of Several Pathogenesis-Related Proteins in Tomato Leaves Inoculated with Cladosporium fulvum (syn. Fulvia fulva) as 1,3-beta-Glucanases and Chitinases. Plant Physiol. 1989 Mar;89(3):945–951. doi: 10.1104/pp.89.3.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kauffmann S., Legrand M., Geoffroy P., Fritig B. Biological function of ;pathogenesis-related' proteins: four PR proteins of tobacco have 1,3-beta-glucanase activity. EMBO J. 1987 Nov;6(11):3209–3212. doi: 10.1002/j.1460-2075.1987.tb02637.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Legrand M., Kauffmann S., Geoffroy P., Fritig B. Biological function of pathogenesis-related proteins: Four tobacco pathogenesis-related proteins are chitinases. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6750–6754. doi: 10.1073/pnas.84.19.6750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Linthorst H. J., Meuwissen R. L., Kauffmann S., Bol J. F. Constitutive expression of pathogenesis-related proteins PR-1, GRP, and PR-S in tobacco has no effect on virus infection. Plant Cell. 1989 Mar;1(3):285–291. doi: 10.1105/tpc.1.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lucas J., Henriquez A. C., Lottspeich F., Henschen A., Sänger H. L. Amino acid sequence of the ;pathogenesis-related' leaf protein p14 from viroid-infected tomato reveals a new type of structurally unfamiliar proteins. EMBO J. 1985 Nov;4(11):2745–2749. doi: 10.1002/j.1460-2075.1985.tb03998.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mauch F., Mauch-Mani B., Boller T. Antifungal Hydrolases in Pea Tissue : II. Inhibition of Fungal Growth by Combinations of Chitinase and beta-1,3-Glucanase. Plant Physiol. 1988 Nov;88(3):936–942. doi: 10.1104/pp.88.3.936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Memelink J., Hoge J. H., Schilperoort R. A. Cytokinin stress changes the developmental regulation of several defence-related genes in tobacco. EMBO J. 1987 Dec 1;6(12):3579–3583. doi: 10.1002/j.1460-2075.1987.tb02688.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Memelink J., Linthorst H. J., Schilperoort R. A., Hoge J. H. Tobacco genes encoding acidic and basic isoforms of pathogenesis-related proteins display different expression patterns. Plant Mol Biol. 1990 Feb;14(2):119–126. doi: 10.1007/BF00018553. [DOI] [PubMed] [Google Scholar]
  24. Molano J., Durán A., Cabib E. A rapid and sensitive assay for chitinase using tritiated chitin. Anal Biochem. 1977 Dec;83(2):648–656. doi: 10.1016/0003-2697(77)90069-0. [DOI] [PubMed] [Google Scholar]
  25. Ponstein A. S., Bres-Vloemans S. A., Sela-Buurlage M. B., van den Elzen P. J., Melchers L. S., Cornelissen B. J. A novel pathogen- and wound-inducible tobacco (Nicotiana tabacum) protein with antifungal activity. Plant Physiol. 1994 Jan;104(1):109–118. doi: 10.1104/pp.104.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sakakibara R., Hashida K., Kitahara T., Ishiguro M. Characterization of a unique nonsecretory ribonuclease from urine of pregnant women. J Biochem. 1992 Mar;111(3):325–330. doi: 10.1093/oxfordjournals.jbchem.a123757. [DOI] [PubMed] [Google Scholar]
  27. Sela-Buurlage M. B., Ponstein A. S., Bres-Vloemans S. A., Melchers L. S., Van Den Elzen PJM., Cornelissen BJC. Only Specific Tobacco (Nicotiana tabacum) Chitinases and [beta]-1,3-Glucanases Exhibit Antifungal Activity. Plant Physiol. 1993 Mar;101(3):857–863. doi: 10.1104/pp.101.3.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  29. Stintzi A., Heitz T., Prasad V., Wiedemann-Merdinoglu S., Kauffmann S., Geoffroy P., Legrand M., Fritig B. Plant 'pathogenesis-related' proteins and their role in defense against pathogens. Biochimie. 1993;75(8):687–706. doi: 10.1016/0300-9084(93)90100-7. [DOI] [PubMed] [Google Scholar]
  30. Tornero P., Rodrigo I., Conejero V., Vera P. Nucleotide sequence of a cDNA encoding a pathogenesis-related protein, p1-p14, from tomato (Lycopersicon esculentum). Plant Physiol. 1993 May;102(1):325–325. doi: 10.1104/pp.102.1.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vigers A. J., Roberts W. K., Selitrennikoff C. P. A new family of plant antifungal proteins. Mol Plant Microbe Interact. 1991 Jul-Aug;4(4):315–323. doi: 10.1094/mpmi-4-315. [DOI] [PubMed] [Google Scholar]
  33. Ward E. R., Uknes S. J., Williams S. C., Dincher S. S., Wiederhold D. L., Alexander D. C., Ahl-Goy P., Metraux J. P., Ryals J. A. Coordinate Gene Activity in Response to Agents That Induce Systemic Acquired Resistance. Plant Cell. 1991 Oct;3(10):1085–1094. doi: 10.1105/tpc.3.10.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Woloshuk C. P., Meulenhoff J. S., Sela-Buurlage M., van den Elzen P. J., Cornelissen B. J. Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell. 1991 Jun;3(6):619–628. doi: 10.1105/tpc.3.6.619. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES