Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 May;108(1):157–162. doi: 10.1104/pp.108.1.157

Effect of Vernalization, Photoperiod, and Light Quality on the Flowering Phenotype of Arabidopsis Plants Containing the FRIGIDA Gene.

I Lee 1, R M Amasino 1
PMCID: PMC157316  PMID: 12228459

Abstract

We have compared the flowering response to vernalization, photoperiod, and far-red (FR) light of the Columbia (Col) and Landsberg erecta (Ler) ecotypes of Arabidopsis into which the flowering-time locus FRIGIDA (FRI) has been introgressed with that of the wild types Col, Ler, and San Feliu-2 (Sf-2). In the early-flowering parental ecotypes, Col and Ler, a large decrease in flowering time in response to vernalization was observed only under short-day conditions. However, Sf-2 and the Ler and Col genotypes containing FRI showed a strong response to vernalization when grown in either long days or short days. Although vernalization reduced the responsiveness to photoperiod, plants vernalized for more than 80 d still showed a slight photoperiod response. The effect of FRI on flowering was eliminated by 30 to 40 d of vernalization; subsequently, the response to vernalization in both long days and short days was the same in Col and Ler with or without FRI. FR-light enrichment accelerated flowering in all ecotypes and introgressed lines. However, the FR-light effect was most conspicuous in the FRI-containing plants. Saturation of the vernalization effect eliminated the effect of FR light on flowering, although vernalization did not eliminate the increase of petiole length in FR light.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown J. A., Klein W. H. Photomorphogenesis in Arabidopsis thaliana (L.) Heynh: Threshold Intensities and Blue-Far-red Synergism in Floral Induction. Plant Physiol. 1971 Mar;47(3):393–399. doi: 10.1104/pp.47.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clarke J. H., Dean C. Mapping FRI, a locus controlling flowering time and vernalization response in Arabidopsis thaliana. Mol Gen Genet. 1994 Jan;242(1):81–89. doi: 10.1007/BF00277351. [DOI] [PubMed] [Google Scholar]
  3. Koornneef M., Hanhart C. J., van der Veen J. H. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet. 1991 Sep;229(1):57–66. doi: 10.1007/BF00264213. [DOI] [PubMed] [Google Scholar]
  4. Lee I., Aukerman M. J., Gore S. L., Lohman K. N., Michaels S. D., Weaver L. M., John M. C., Feldmann K. A., Amasino R. M. Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell. 1994 Jan;6(1):75–83. doi: 10.1105/tpc.6.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lee I., Bleecker A., Amasino R. Analysis of naturally occurring late flowering in Arabidopsis thaliana. Mol Gen Genet. 1993 Feb;237(1-2):171–176. doi: 10.1007/BF00282798. [DOI] [PubMed] [Google Scholar]
  6. Reed J. W., Nagpal P., Poole D. S., Furuya M., Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell. 1993 Feb;5(2):147–157. doi: 10.1105/tpc.5.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Wilson R. N., Heckman J. W., Somerville C. R. Gibberellin Is Required for Flowering in Arabidopsis thaliana under Short Days. Plant Physiol. 1992 Sep;100(1):403–408. doi: 10.1104/pp.100.1.403. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES