Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 May;108(1):303–312. doi: 10.1104/pp.108.1.303

Rapid Response of the Yield Threshold and Turgor Regulation during Adjustment of Root Growth to Water Stress in Zea mays.

J Frensch 1, T C Hsiao 1
PMCID: PMC157335  PMID: 12228475

Abstract

Responses of cortical cell turgor (P) following rapid changes in osmotic pressure ([pi]m) were measured throughout the elongation zone of maize (Zea mays L.) roots using a cell pressure probe and compared with simultaneously measured root elongation to evaluate: yield threshold (Y) (minimum P for growth), wall extensibility, growth-zone radial hydraulic conductivity (K), and turgor recovery rate. Small increases in [pi]m (0.1 MPa) temporarily decreased P and growth, which recovered fully in 5 to 10 min. Under stronger [pi]m (up to 0.6 MPa), elongation stopped for up to 30 min and then resumed at lower rates. Recoveries in P through solute accumulation and lowering of Y enabled growth under water stress. P recovery was as much as 0.3 MPa at [pi]m = 0.6 MPa, but recovery rate declined as water stress increased, suggesting turgor-sensitive solute transport into the growth zone. Under strong [pi]m, P did not recover in the basal part of the growth zone, in conjunction with a 30% shortening of the growth zone. Time courses showed Y beginning to decrease within several minutes after stress imposition, from about 0.65 MPa to a minimum of about 0.3 MPa in about 15 min. The data concerning Y were not confounded significantly by elastic shrinkage. K was high (1.3 x 10-10 m2 s-1 MPa-1), suggesting very small growth-induced water potential gradients.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexandre J., Lassalles J. P. Hydrostatic and osmotic pressure activated channel in plant vacuole. Biophys J. 1991 Dec;60(6):1326–1336. doi: 10.1016/S0006-3495(91)82170-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bret-Harte M. S., Silk W. K. Nonvascular, Symplasmic Diffusion of Sucrose Cannot Satisfy the Carbon Demands of Growth in the Primary Root Tip of Zea mays L. Plant Physiol. 1994 May;105(1):19–33. doi: 10.1104/pp.105.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cosgrove D. J. Cell wall yield properties of growing tissue : evaluation by in vivo stress relaxation. Plant Physiol. 1985 Jun;78(2):347–356. doi: 10.1104/pp.78.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cosgrove D. J. Wall extensibility: its nature, measurement and relationship to plant cell growth. New Phytol. 1993 May;124(1):1–23. doi: 10.1111/j.1469-8137.1993.tb03795.x. [DOI] [PubMed] [Google Scholar]
  5. Cosgrove D. J. Wall relaxation in growing stems: comparison of four species and assessment of measurement techniques. Planta. 1987;171:266–278. [PubMed] [Google Scholar]
  6. Cosgrove D. Biophysical control of plant cell growth. Annu Rev Plant Physiol. 1986;37:377–405. doi: 10.1146/annurev.pp.37.060186.002113. [DOI] [PubMed] [Google Scholar]
  7. Frensch J., Hsiao T. C. Transient Responses of Cell Turgor and Growth of Maize Roots as Affected by Changes in Water Potential. Plant Physiol. 1994 Jan;104(1):247–254. doi: 10.1104/pp.104.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Green P. B., Erickson R. O., Buggy J. Metabolic and physical control of cell elongation rate: in vivo studies in nitella. Plant Physiol. 1971 Mar;47(3):423–430. doi: 10.1104/pp.47.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lockhart J. A. An analysis of irreversible plant cell elongation. J Theor Biol. 1965 Mar;8(2):264–275. doi: 10.1016/0022-5193(65)90077-9. [DOI] [PubMed] [Google Scholar]
  10. Matyssek R., Maruyama S., Boyer J. S. Rapid wall relaxation in elongating tissues. Plant Physiol. 1988 Apr;86(4):1163–1167. doi: 10.1104/pp.86.4.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nonami H., Boyer J. S. Direct Demonstration of a Growth-Induced Water Potential Gradient. Plant Physiol. 1993 May;102(1):13–19. doi: 10.1104/pp.102.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Serpe M. D., Matthews M. A. Rapid Changes in Cell Wall Yielding of Elongating Begonia argenteo-guttata L. Leaves in Response to Changes in Plant Water Status. Plant Physiol. 1992 Dec;100(4):1852–1857. doi: 10.1104/pp.100.4.1852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Shackel K. A., Matthews M. A., Morrison J. C. Dynamic Relation between Expansion and Cellular Turgor in Growing Grape (Vitis vinifera L.) Leaves. Plant Physiol. 1987 Aug;84(4):1166–1171. doi: 10.1104/pp.84.4.1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sharp R. E., Hsiao T. C., Silk W. K. Growth of the Maize Primary Root at Low Water Potentials : II. Role of Growth and Deposition of Hexose and Potassium in Osmotic Adjustment. Plant Physiol. 1990 Aug;93(4):1337–1346. doi: 10.1104/pp.93.4.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sharp R. E., Silk W. K., Hsiao T. C. Growth of the maize primary root at low water potentials : I. Spatial distribution of expansive growth. Plant Physiol. 1988 May;87(1):50–57. doi: 10.1104/pp.87.1.50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Silk W. K., Wagner K. K. Growth-sustaining Water Potential Distributions in the Primary Corn Root: A NONCOMPARTMENTED CONTINUUM MODEL. Plant Physiol. 1980 Nov;66(5):859–863. doi: 10.1104/pp.66.5.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Smith R. C., Fry S. C. Endotransglycosylation of xyloglucans in plant cell suspension cultures. Biochem J. 1991 Oct 15;279(Pt 2):529–535. doi: 10.1042/bj2790529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Spollen W. G., Sharp R. E. Spatial distribution of turgor and root growth at low water potentials. Plant Physiol. 1991 Jun;96(2):438–443. doi: 10.1104/pp.96.2.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Steudle E., Zimmermann U. Effect of turgor pressure and cell size on the wall elasticity of plant cells. Plant Physiol. 1977 Feb;59(2):285–289. doi: 10.1104/pp.59.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tomos A. D., Malone M., Pritchard J. The biophysics of differential growth. Environ Exp Bot. 1989 Jan;29(1):7–23. doi: 10.1016/0098-8472(89)90035-x. [DOI] [PubMed] [Google Scholar]
  21. Wu Y., Spollen W. G., Sharp R. E., Hetherington P. R., Fry S. C. Root Growth Maintenance at Low Water Potentials (Increased Activity of Xyloglucan Endotransglycosylase and Its Possible Regulation by Abscisic Acid). Plant Physiol. 1994 Oct;106(2):607–615. doi: 10.1104/pp.106.2.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zhu G. L., Boyer J. S. Enlargement in chara studied with a turgor clamp : growth rate is not determined by turgor. Plant Physiol. 1992 Dec;100(4):2071–2080. doi: 10.1104/pp.100.4.2071. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES