Abstract
Enzymes of the eukaryotic protein kinase superfamily catalyze the reversible transfer of the gamma-phosphate from ATP to amino acid side chains of proteins. Protein kinase function can be counteracted by the action of phosphoprotein phosphatases. Phosphorylation status of a protein can have profound effects on its activity and interaction with other proteins. An estimated 1 to 3% of functional eukaryotic genes encode protein kinases, suggesting that they are involved in many aspects of cellular regulation and metabolism. In plants, protein phosphorylation has been implicated in responses to many signals, including light, pathogen invasion, hormones, temperature stress, and nutrient deprivation. Activities of several plant metabolic and regulatory enzymes are also controlled by reversible phosphorylation. As might be expected from this diversity of function, there is a large array of different protein kinases. Purification of protein kinases and their subsequent cloning, facilitated by the PCR and advances in homology-based cloning techniques, as well as functional analyses, including complementation of conditional yeast mutants and positional cloning of mutant plant genes, has already led to identification of more than 70 plant protein kinase genes. However, the precise functional roles of specific protein kinases and phosphatases during plant growth and development have been elucidated for only a few.
Full Text
The Full Text of this article is available as a PDF (780.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alderson A., Sabelli P. A., Dickinson J. R., Cole D., Richardson M., Kreis M., Shewry P. R., Halford N. G. Complementation of snf1, a mutation affecting global regulation of carbon metabolism in yeast, by a plant protein kinase cDNA. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8602–8605. doi: 10.1073/pnas.88.19.8602. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderberg R. J., Walker-Simmons M. K. Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10183–10187. doi: 10.1073/pnas.89.21.10183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bianchi M. W., Guivarc'h D., Thomas M., Woodgett J. R., Kreis M. Arabidopsis homologs of the shaggy and GSK-3 protein kinases: molecular cloning and functional expression in Escherichia coli. Mol Gen Genet. 1994 Feb;242(3):337–345. doi: 10.1007/BF00280424. [DOI] [PubMed] [Google Scholar]
- Carling D., Aguan K., Woods A., Verhoeven A. J., Beri R. K., Brennan C. H., Sidebottom C., Davison M. D., Scott J. Mammalian AMP-activated protein kinase is homologous to yeast and plant protein kinases involved in the regulation of carbon metabolism. J Biol Chem. 1994 Apr 15;269(15):11442–11448. [PubMed] [Google Scholar]
- Chang C., Kwok S. F., Bleecker A. B., Meyerowitz E. M. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science. 1993 Oct 22;262(5133):539–544. doi: 10.1126/science.8211181. [DOI] [PubMed] [Google Scholar]
- Collinge M. A., Walker J. C. Isolation of an Arabidopsis thaliana casein kinase II beta subunit by complementation in Saccharomyces cerevisiae. Plant Mol Biol. 1994 Jul;25(4):649–658. doi: 10.1007/BF00029603. [DOI] [PubMed] [Google Scholar]
- Daum G., Eisenmann-Tappe I., Fries H. W., Troppmair J., Rapp U. R. The ins and outs of Raf kinases. Trends Biochem Sci. 1994 Nov;19(11):474–480. doi: 10.1016/0968-0004(94)90133-3. [DOI] [PubMed] [Google Scholar]
- Davis R. J. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem. 1993 Jul 15;268(20):14553–14556. [PubMed] [Google Scholar]
- Dobrowolska G., Boldyreff B., Issinger O. G. Cloning and sequencing of the casein kinase 2 alpha subunit from Zea mays. Biochim Biophys Acta. 1991 Dec 2;1129(1):139–140. doi: 10.1016/0167-4781(91)90230-j. [DOI] [PubMed] [Google Scholar]
- Doerner P. W. Cell Cycle Regulation in Plants. Plant Physiol. 1994 Nov;106(3):823–827. doi: 10.1104/pp.106.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duerr B., Gawienowski M., Ropp T., Jacobs T. MsERK1: a mitogen-activated protein kinase from a flowering plant. Plant Cell. 1993 Jan;5(1):87–96. doi: 10.1105/tpc.5.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanks S. K., Quinn A. M., Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988 Jul 1;241(4861):42–52. doi: 10.1126/science.3291115. [DOI] [PubMed] [Google Scholar]
- Hardie D. G. Molecular physiology. Ways of coping with stress. Nature. 1994 Aug 25;370(6491):599–600. doi: 10.1038/370599a0. [DOI] [PubMed] [Google Scholar]
- Harmon A. C., Yoo B. C., McCaffery C. Pseudosubstrate inhibition of CDPK, a protein kinase with a calmodulin-like domain. Biochemistry. 1994 Jun 14;33(23):7278–7287. doi: 10.1021/bi00189a032. [DOI] [PubMed] [Google Scholar]
- Harper J. F., Huang J. F., Lloyd S. J. Genetic identification of an autoinhibitor in CDPK, a protein kinase with a calmodulin-like domain. Biochemistry. 1994 Jun 14;33(23):7267–7277. doi: 10.1021/bi00189a031. [DOI] [PubMed] [Google Scholar]
- Ito Y., Banno H., Moribe T., Hinata K., Machida Y. NPK15, a tobacco protein-serine/threonine kinase with a single hydrophobic region near the amino-terminus. Mol Gen Genet. 1994 Oct 17;245(1):1–10. doi: 10.1007/BF00279745. [DOI] [PubMed] [Google Scholar]
- Kieber J. J., Rothenberg M., Roman G., Feldmann K. A., Ecker J. R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell. 1993 Feb 12;72(3):427–441. doi: 10.1016/0092-8674(93)90119-b. [DOI] [PubMed] [Google Scholar]
- Klimczak L. J., Collinge M. A., Farini D., Giuliano G., Walker J. C., Cashmore A. R. Reconstitution of Arabidopsis casein kinase II from recombinant subunits and phosphorylation of transcription factor GBF1. Plant Cell. 1995 Jan;7(1):105–115. doi: 10.1105/tpc.7.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawton M. A., Yamamoto R. T., Hanks S. K., Lamb C. J. Molecular cloning of plant transcripts encoding protein kinase homologs. Proc Natl Acad Sci U S A. 1989 May;86(9):3140–3144. doi: 10.1073/pnas.86.9.3140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin G. B., Brommonschenkel S. H., Chunwongse J., Frary A., Ganal M. W., Spivey R., Wu T., Earle E. D., Tanksley S. D. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science. 1993 Nov 26;262(5138):1432–1436. doi: 10.1126/science.7902614. [DOI] [PubMed] [Google Scholar]
- Martin G. B., Frary A., Wu T., Brommonschenkel S., Chunwongse J., Earle E. D., Tanksley S. D. A member of the tomato Pto gene family confers sensitivity to fenthion resulting in rapid cell death. Plant Cell. 1994 Nov;6(11):1543–1552. doi: 10.1105/tpc.6.11.1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mizoguchi T., Gotoh Y., Nishida E., Yamaguchi-Shinozaki K., Hayashida N., Iwasaki T., Kamada H., Shinozaki K. Characterization of two cDNAs that encode MAP kinase homologues in Arabidopsis thaliana and analysis of the possible role of auxin in activating such kinase activities in cultured cells. Plant J. 1994 Jan;5(1):111–122. doi: 10.1046/j.1365-313x.1994.5010111.x. [DOI] [PubMed] [Google Scholar]
- Mizoguchi T., Yamaguchi-Shinozaki K., Hayashida N., Kamada H., Shinozaki K. Cloning and characterization of two cDNAs encoding casein kinase II catalytic subunits in Arabidopsis thaliana. Plant Mol Biol. 1993 Jan;21(2):279–289. doi: 10.1007/BF00019944. [DOI] [PubMed] [Google Scholar]
- Muranaka T., Banno H., Machida Y. Characterization of tobacco protein kinase NPK5, a homolog of Saccharomyces cerevisiae SNF1 that constitutively activates expression of the glucose-repressible SUC2 gene for a secreted invertase of S. cerevisiae. Mol Cell Biol. 1994 May;14(5):2958–2965. doi: 10.1128/mcb.14.5.2958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Padmanabha R., Chen-Wu J. L., Hanna D. E., Glover C. V. Isolation, sequencing, and disruption of the yeast CKA2 gene: casein kinase II is essential for viability in Saccharomyces cerevisiae. Mol Cell Biol. 1990 Aug;10(8):4089–4099. doi: 10.1128/mcb.10.8.4089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pay A., Jonak C., Bögre L., Meskiene I., Mairinger T., Szalay A., Heberle-Bors E., Hirt H. The MsK family of alfalfa protein kinase genes encodes homologues of shaggy/glycogen synthase kinase-3 and shows differential expression patterns in plant organs and development. Plant J. 1993 Jun;3(6):847–856. doi: 10.1111/j.1365-313x.1993.00847.x. [DOI] [PubMed] [Google Scholar]
- Popov K. M., Kedishvili N. Y., Zhao Y., Gudi R., Harris R. A. Molecular cloning of the p45 subunit of pyruvate dehydrogenase kinase. J Biol Chem. 1994 Nov 25;269(47):29720–29724. [PubMed] [Google Scholar]
- Sano H., Youssefian S. Light and nutritional regulation of transcripts encoding a wheat protein kinase homolog is mediated by cytokinins. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2582–2586. doi: 10.1073/pnas.91.7.2582. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shibata W., Banno H., Ito Y., Hirano K., Irie K., Usami S., Machida C., Machida Y. A tobacco protein kinase, NPK2, has a domain homologous to a domain found in activators of mitogen-activated protein kinases (MAPKKs). Mol Gen Genet. 1995 Feb 20;246(4):401–410. doi: 10.1007/BF00290443. [DOI] [PubMed] [Google Scholar]
- Spiteri A., Viratelle O. M., Raymond P., Rancillac M., Labouesse J., Pradet A. Artefactual Origins of Cyclic AMP in Higher Plant Tissues. Plant Physiol. 1989 Oct;91(2):624–628. doi: 10.1104/pp.91.2.624. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stone J. M., Collinge M. A., Smith R. D., Horn M. A., Walker J. C. Interaction of a protein phosphatase with an Arabidopsis serine-threonine receptor kinase. Science. 1994 Nov 4;266(5186):793–795. doi: 10.1126/science.7973632. [DOI] [PubMed] [Google Scholar]
- Swanson R. V., Alex L. A., Simon M. I. Histidine and aspartate phosphorylation: two-component systems and the limits of homology. Trends Biochem Sci. 1994 Nov;19(11):485–490. doi: 10.1016/0968-0004(94)90135-x. [DOI] [PubMed] [Google Scholar]
- Walker J. C. Structure and function of the receptor-like protein kinases of higher plants. Plant Mol Biol. 1994 Dec;26(5):1599–1609. doi: 10.1007/BF00016492. [DOI] [PubMed] [Google Scholar]
- Zhang S. H., Lawton M. A., Hunter T., Lamb C. J. atpk1, a novel ribosomal protein kinase gene from Arabidopsis. I. Isolation, characterization, and expression. J Biol Chem. 1994 Jul 1;269(26):17586–17592. [PubMed] [Google Scholar]
- van der Geer P., Hunter T., Lindberg R. A. Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol. 1994;10:251–337. doi: 10.1146/annurev.cb.10.110194.001343. [DOI] [PubMed] [Google Scholar]