Abstract
Flavonoids produced by legume roots are signal molecules acting both as chemoattractants and nod gene inducers for the symbiotic Rhizobium partner. Combined nitrogen inhibits the establishment of the symbiosis. To know whether nitrogen nutrition could act at the level of signal production, we have studied the expression of flavonoid biosynthetic genes as well as the production of flavonoids in the roots of plants grown under nitrogen-limiting or nonlimiting conditions. We show here that growth of the plant under nitrogen-limiting conditions results in the enhancement of expression of the flavonoid biosynthesis genes chalcone synthase and isoflavone reductase and in an increase of root flavonoid and isoflavonoid production as well as in the Rhizobium meliloti nod gene-inducing activity of the root extract. These results indicate that in alfalfa (Medicago sativa L.) roots, the production of flavonoids can be influenced by the nitrogen nutrition of the plant.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cho M. J., Harper J. E. Effect of inoculation and nitrogen on isoflavonoid concentration in wild-type and nodulation-mutant soybean roots. Plant Physiol. 1991 Feb;95(2):435–442. doi: 10.1104/pp.95.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cho M. J., Harper J. E. Effect of localized nitrate application on isoflavonoid concentration and nodulation in split-root systems of wild-type and nodulation-mutant soybean plants. Plant Physiol. 1991 Apr;95(4):1106–1112. doi: 10.1104/pp.95.4.1106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dakora F. D., Joseph C. M., Phillips D. A. Alfalfa (Medicago sativa L.) Root Exudates Contain Isoflavonoids in the Presence of Rhizobium meliloti. Plant Physiol. 1993 Mar;101(3):819–824. doi: 10.1104/pp.101.3.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Esnault R., Buffard D., Breda C., Sallaud C., el Turk J., Kondorosi A. Pathological and molecular characterizations of alfalfa interactions with compatible and incompatible bacteria, Xanthomonas campestris pv. alfalfae and Pseudomonas syringae pv. pisi. Mol Plant Microbe Interact. 1993 Sep-Oct;6(5):655–664. doi: 10.1094/mpmi-6-655. [DOI] [PubMed] [Google Scholar]
- Estabrook E. M., Sengupta-Gopalan C. Differential expression of phenylalanine ammonia-lyase and chalcone synthase during soybean nodule development. Plant Cell. 1991 Mar;3(3):299–308. doi: 10.1105/tpc.3.3.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fisher R. F., Long S. R. Rhizobium--plant signal exchange. Nature. 1992 Jun 25;357(6380):655–660. doi: 10.1038/357655a0. [DOI] [PubMed] [Google Scholar]
- Harker C. L., Ellis T. H., Coen E. S. Identification and genetic regulation of the chalcone synthase multigene family in pea. Plant Cell. 1990 Mar;2(3):185–194. doi: 10.1105/tpc.2.3.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobs M., Rubery P. H. Naturally occurring auxin transport regulators. Science. 1988 Jul 15;241(4863):346–349. doi: 10.1126/science.241.4863.346. [DOI] [PubMed] [Google Scholar]
- Junghans H., Dalkin K., Dixon R. A. Stress responses in alfalfa (Medicago sativa L.). 15. Characterization and expression patterns of members of a subset of the chalcone synthase multigene family. Plant Mol Biol. 1993 May;22(2):239–253. doi: 10.1007/BF00014932. [DOI] [PubMed] [Google Scholar]
- Kapulnik Y., Joseph C. M., Phillips D. A. Flavone limitations to root nodulation and symbiotic nitrogen fixation in alfalfa. Plant Physiol. 1987 Aug;84(4):1193–1196. doi: 10.1104/pp.84.4.1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koes R. E., Spelt C. E., van den Elzen P. J., Mol J. N. Cloning and molecular characterization of the chalcone synthase multigene family of Petunia hybrida. Gene. 1989 Sep 30;81(2):245–257. doi: 10.1016/0378-1119(89)90185-6. [DOI] [PubMed] [Google Scholar]
- Maxwell C. A., Hartwig U. A., Joseph C. M., Phillips D. A. A Chalcone and Two Related Flavonoids Released from Alfalfa Roots Induce nod Genes of Rhizobium meliloti. Plant Physiol. 1989 Nov;91(3):842–847. doi: 10.1104/pp.91.3.842. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McKhann H. I., Hirsch A. M. Isolation of chalcone synthase and chalcone isomerase cDNAs from alfalfa (Medicago sativa L.): highest transcript levels occur in young roots and root tips. Plant Mol Biol. 1994 Mar;24(5):767–777. doi: 10.1007/BF00029858. [DOI] [PubMed] [Google Scholar]
- Mulligan J. T., Long S. R. Induction of Rhizobium meliloti nodC expression by plant exudate requires nodD. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6609–6613. doi: 10.1073/pnas.82.19.6609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nair M. G., Safir G. R., Siqueira J. O. Isolation and Identification of Vesicular-Arbuscular Mycorrhiza-Stimulatory Compounds from Clover (Trifolium repens) Roots. Appl Environ Microbiol. 1991 Feb;57(2):434–439. doi: 10.1128/aem.57.2.434-439.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orosz L., Sváb Z., Kondorosi A., Sik T. Genetic studies on rhizobiophage 16-3. I. Genes and functions on the chromosome. Mol Gen Genet. 1973 Sep 27;125(4):341–350. [PubMed] [Google Scholar]
- Peters N. K., Long S. R. Alfalfa Root Exudates and Compounds which Promote or Inhibit Induction of Rhizobium meliloti Nodulation Genes. Plant Physiol. 1988 Oct;88(2):396–400. doi: 10.1104/pp.88.2.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peters N. K., Verma D. P. Phenolic compounds as regulators of gene expression in plant-microbe relations. Mol Plant Microbe Interact. 1990 Jan-Feb;3(1):4–8. doi: 10.1094/mpmi-3-004. [DOI] [PubMed] [Google Scholar]
- Phillips D. A., Joseph C. M., Maxwell C. A. Trigonelline and Stachydrine Released from Alfalfa Seeds Activate NodD2 Protein in Rhizobium meliloti. Plant Physiol. 1992 Aug;99(4):1526–1531. doi: 10.1104/pp.99.4.1526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryder T. B., Hedrick S. A., Bell J. N., Liang X. W., Clouse S. D., Lamb C. J. Organization and differential activation of a gene family encoding the plant defense enzyme chalcone synthase in Phaseolus vulgaris. Mol Gen Genet. 1987 Dec;210(2):219–233. doi: 10.1007/BF00325687. [DOI] [PubMed] [Google Scholar]
- Ward E. W., Cahill D. M., Bhattacharyya M. K. Abscisic Acid Suppression of Phenylalanine Ammonia-Lyase Activity and mRNA, and Resistance of Soybeans to Phytophthora megasperma f.sp. glycinea. Plant Physiol. 1989 Sep;91(1):23–27. doi: 10.1104/pp.91.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss D., van Tunen A. J., Halevy A. H., Mol J. N., Gerats A. G. Stamens and Gibberellic Acid in the Regulation of Flavonoid Gene Expression in the Corolla of Petunia hybrida. Plant Physiol. 1990 Oct;94(2):511–515. doi: 10.1104/pp.94.2.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wingender R., Röhrig H., Höricke C., Wing D., Schell J. Differential regulation of soybean chalcone synthase genes in plant defence, symbiosis and upon environmental stimuli. Mol Gen Genet. 1989 Aug;218(2):315–322. doi: 10.1007/BF00331284. [DOI] [PubMed] [Google Scholar]
