Abstract
Recently, we provided preliminary evidence for calcium (Ca2+)/calmodulin (CaM) stimulation of plant glutamate decarboxylase (GAD; EC 4.1.1.15). In the present study, a detailed characterization of the phenomenon is described. GAD was partially purified from various soybean (Glycine max L. Merr.) tissues (developing seed coat and cotyledons, leaf, and root) in the presence of EDTA by a combination of ammonium sulfate precipitation and anion-exchange fast protein liquid chromatography. GAD activity showed a sharp optimum at pH 5.8, with about 12% of maximal activity at pH 7. It was stimulated 2- to 8-fold (depending on the tissue source) in the presence of Ca2+/CaM at pH 7 but not at pH 5.8. Furthermore, when the protease inhibitor phenylmethylsulfonyl fluoride was omitted from the purification procedure, GAD activity was insensitive to Ca2+/CaM but was similar in magnitude to CaM-stimulated activity. The stimulation by Ca2+/CaM was fully inhibited by the CaM antagonists N-(6-aminohexyl)-5-chloro-1-naphthalenesulfon-amide and trifluoperazine. With saturating CaM or Ca2+, the concentrations of Ca2+ and CaM required for half-maximal stimulation were about 7 to 11 [mu]M and 25 nM, respectively. The effect of Ca2+ and CaM appeared to be through a 2.4-fold stimulation of Vmax and a 55% reduction in Km. The results suggested that GAD is activated via Ca2+ signal transduction.
Full Text
The Full Text of this article is available as a PDF (688.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arazi T., Baum G., Snedden W. A., Shelp B. J., Fromm H. Molecular and biochemical analysis of calmodulin interactions with the calmodulin-binding domain of plant glutamate decarboxylase. Plant Physiol. 1995 Jun;108(2):551–561. doi: 10.1104/pp.108.2.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Askerlund P., Evans D. E. Reconstitution and Characterization of a Calmodulin-Stimulated Ca-Pumping ATPase Purified from Brassica oleracea L. Plant Physiol. 1992 Dec;100(4):1670–1681. doi: 10.1104/pp.100.4.1670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baum G., Chen Y., Arazi T., Takatsuji H., Fromm H. A plant glutamate decarboxylase containing a calmodulin binding domain. Cloning, sequence, and functional analysis. J Biol Chem. 1993 Sep 15;268(26):19610–19617. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Bush D. S. Regulation of Cytosolic Calcium in Plants. Plant Physiol. 1993 Sep;103(1):7–13. doi: 10.1104/pp.103.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carafoli E. Calcium pump of the plasma membrane. Physiol Rev. 1991 Jan;71(1):129–153. doi: 10.1152/physrev.1991.71.1.129. [DOI] [PubMed] [Google Scholar]
- Carroll A. D., Fox G. G., Laurie S., Phillips R., Ratcliffe R. G., Stewart G. R. Ammonium Assimilation and the Role of [gamma]-Aminobutyric Acid in pH Homeostasis in Carrot Cell Suspensions. Plant Physiol. 1994 Oct;106(2):513–520. doi: 10.1104/pp.106.2.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Y. R., Datta N., Roux S. J. Purification and partial characterization of a calmodulin-stimulated nucleoside triphosphatase from pea nuclei. J Biol Chem. 1987 Aug 5;262(22):10689–10694. [PubMed] [Google Scholar]
- Chen Y., Baum G., Fromm H. The 58-Kilodalton Calmodulin-Binding Glutamate Decarboxylase Is a Ubiquitous Protein in Petunia Organs and Its Expression Is Developmentally Regulated. Plant Physiol. 1994 Dec;106(4):1381–1387. doi: 10.1104/pp.106.4.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colbran R. J., Fong Y. L., Schworer C. M., Soderling T. R. Regulatory interactions of the calmodulin-binding, inhibitory, and autophosphorylation domains of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 1988 Dec 5;263(34):18145–18151. [PubMed] [Google Scholar]
- Collinge M., Trewavas A. J. The location of calmodulin in the pea plasma membrane. J Biol Chem. 1989 May 25;264(15):8865–8872. [PubMed] [Google Scholar]
- Crawford L. A., Bown A. W., Breitkreuz K. E., Guinel F. C. The Synthesis of [gamma]-Aminobutyric Acid in Response to Treatments Reducing Cytosolic pH. Plant Physiol. 1994 Mar;104(3):865–871. doi: 10.1104/pp.104.3.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erlander M. G., Tobin A. J. The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochem Res. 1991 Mar;16(3):215–226. doi: 10.1007/BF00966084. [DOI] [PubMed] [Google Scholar]
- Harmon A. C., Jarrett H. W., Cormier M. J. An enzymatic assay for calmodulins based on plant NAD kinase activity. Anal Biochem. 1984 Aug 15;141(1):168–178. doi: 10.1016/0003-2697(84)90441-x. [DOI] [PubMed] [Google Scholar]
- Horn M. A., Meadows R. P., Apostol I., Jones C. R., Gorenstein D. G., Heinstein P. F., Low P. S. Effect of Elicitation and Changes in Extracellular pH on the Cytoplasmic and Vacuolar pH of Suspension-Cultured Soybean Cells. Plant Physiol. 1992 Feb;98(2):680–686. doi: 10.1104/pp.98.2.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inatomi K., Slaughter J. C. Glutamate decarboxylase from barley embryos and roots. General properties and the occurrence of three enzymic forms. Biochem J. 1975 Jun;147(3):479–484. doi: 10.1042/bj1470479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knight M. R., Campbell A. K., Smith S. M., Trewavas A. J. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature. 1991 Aug 8;352(6335):524–526. doi: 10.1038/352524a0. [DOI] [PubMed] [Google Scholar]
- Nathan B., Hsu C. C., Bao J., Wu R., Wu J. Y. Purification and characterization of a novel form of brain L-glutamate decarboxylase. A Ca(2+)-dependent peripheral membrane protein. J Biol Chem. 1994 Mar 11;269(10):7249–7254. [PubMed] [Google Scholar]
- Poovaiah B. W., Reddy A. S. Calcium and signal transduction in plants. CRC Crit Rev Plant Sci. 1993;12(3):185–211. doi: 10.1080/07352689309701901. [DOI] [PubMed] [Google Scholar]
- Rasi-Caldogno F., Carnelli A., De Michelis M. I. Controlled Proteolysis Activates the Plasma Membrane Ca2+ Pump of Higher Plants (A Comparison with the Effect of Calmodulin in Plasma Membrane from Radish Seedlings). Plant Physiol. 1993 Oct;103(2):385–390. doi: 10.1104/pp.103.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SALGANICOFF L., DEROBERTIS E. SUBCELLULAR DISTRIBUTION OF THE ENZYMES OF THE GLUTAMIC ACID, GLUTAMINE AND GAMMA-AMINOBUTYRIC ACID CYCLES IN RAT BRAIN. J Neurochem. 1965 Apr;12:287–309. doi: 10.1111/j.1471-4159.1965.tb06766.x. [DOI] [PubMed] [Google Scholar]
- Satyanarayan V., Nair P. M. Purification and characterization of glutamate decarboxylase from Solanum tuberosum. Eur J Biochem. 1985 Jul 1;150(1):53–60. doi: 10.1111/j.1432-1033.1985.tb08987.x. [DOI] [PubMed] [Google Scholar]
- Sheta E. A., McMillan K., Masters B. S. Evidence for a bidomain structure of constitutive cerebellar nitric oxide synthase. J Biol Chem. 1994 May 27;269(21):15147–15153. [PubMed] [Google Scholar]
- Snedden W. A., Chung I., Pauls R. H., Bown A. W. Proton/l-Glutamate Symport and the Regulation of Intracellular pH in Isolated Mesophyll Cells. Plant Physiol. 1992 Jun;99(2):665–671. doi: 10.1104/pp.99.2.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Streeter J. G., Thompson J. F. Anaerobic Accumulation of gamma-Aminobutyric Acid and Alanine in Radish Leaves (Raphanus sativus, L.). Plant Physiol. 1972 Apr;49(4):572–578. doi: 10.1104/pp.49.4.572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallace W., Secor J., Schrader L. E. Rapid Accumulation of gamma-Aminobutyric Acid and Alanine in Soybean Leaves in Response to an Abrupt Transfer to Lower Temperature, Darkness, or Mechanical Manipulation. Plant Physiol. 1984 May;75(1):170–175. doi: 10.1104/pp.75.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]