Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Jun;108(2):551–561. doi: 10.1104/pp.108.2.551

Molecular and biochemical analysis of calmodulin interactions with the calmodulin-binding domain of plant glutamate decarboxylase.

T Arazi 1, G Baum 1, W A Snedden 1, B J Shelp 1, H Fromm 1
PMCID: PMC157374  PMID: 7610159

Abstract

We previously provided what to our knowledge is the first evidence that plant glutamate decarboxylase (GAD) is a calmodulin (CaM)-binding protein. Here, we studied the GAD CaM-binding domain in detail. A synthetic peptide of 26 amino acids corresponding to this domain forms a stable complex with Ca2+/CaM with a 1:1 stoichiometry, and amino acid substitutions suggest that tryptophan-485 has an indispensable role in CaM binding. Chemical cross-linking revealed specific CaM/GAD interactions even in the absence of Ca2+. However, increasing KCI concentrations or deletion of two carboxy-terminal lysines abolished these interactions but had a mild effect on CaM/GAD interactions in the presence of Ca2+. We conclude that in the presence of Ca(2+)-hydrophobic interactions involving tryptophan-485 and electrostatic interactions involving the carboxy-terminal lysines mediate CaM/GAD complex formation. By contrast, in the absence of Ca2+, CaM/GAD interactions are essentially electrostatic and involve the carboxy-terminal lysines. In addition, a tryptophan residue and carboxy-terminal lysines are present in the CaM-binding domain of an Arabidopsis GAD. Finally, we demonstrate that petunia GAD activity is stimulated in vitro by Ca2+/CaM. Our study provides a molecular basis for Ca(2+)-dependent CaM/GAD interactions and suggests the possible occurrence of Ca(2+)-independent CaM/GAD interactions.

Full Text

The Full Text of this article is available as a PDF (4.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander K. A., Wakim B. T., Doyle G. S., Walsh K. A., Storm D. R. Identification and characterization of the calmodulin-binding domain of neuromodulin, a neurospecific calmodulin-binding protein. J Biol Chem. 1988 Jun 5;263(16):7544–7549. [PubMed] [Google Scholar]
  2. Bowler C., Chua N. H. Emerging themes of plant signal transduction. Plant Cell. 1994 Nov;6(11):1529–1541. doi: 10.1105/tpc.6.11.1529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen Y., Baum G., Fromm H. The 58-Kilodalton Calmodulin-Binding Glutamate Decarboxylase Is a Ubiquitous Protein in Petunia Organs and Its Expression Is Developmentally Regulated. Plant Physiol. 1994 Dec;106(4):1381–1387. doi: 10.1104/pp.106.4.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Colbran R. J., Soderling T. R. Calcium/calmodulin-dependent protein kinase II. Curr Top Cell Regul. 1990;31:181–221. doi: 10.1016/b978-0-12-152831-7.50007-x. [DOI] [PubMed] [Google Scholar]
  5. Geiser J. R., van Tuinen D., Brockerhoff S. E., Neff M. M., Davis T. N. Can calmodulin function without binding calcium? Cell. 1991 Jun 14;65(6):949–959. doi: 10.1016/0092-8674(91)90547-c. [DOI] [PubMed] [Google Scholar]
  6. Giedroc D. P., Puett D., Ling N., Staros J. V. Demonstration by covalent cross-linking of a specific interaction between beta-endorphin and calmodulin. J Biol Chem. 1983 Jan 10;258(1):16–19. [PubMed] [Google Scholar]
  7. Gilroy S., Jones R. L. Gibberellic acid and abscisic acid coordinately regulate cytoplasmic calcium and secretory activity in barley aleurone protoplasts. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3591–3595. doi: 10.1073/pnas.89.8.3591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hartwig J. H., Thelen M., Rosen A., Janmey P. A., Nairn A. C., Aderem A. MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin. Nature. 1992 Apr 16;356(6370):618–622. doi: 10.1038/356618a0. [DOI] [PubMed] [Google Scholar]
  9. Ikura M., Clore G. M., Gronenborn A. M., Zhu G., Klee C. B., Bax A. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science. 1992 May 1;256(5057):632–638. doi: 10.1126/science.1585175. [DOI] [PubMed] [Google Scholar]
  10. Itakura M., Iio T. Static and kinetic studies of calmodulin and melittin complex. J Biochem. 1992 Aug;112(2):183–191. doi: 10.1093/oxfordjournals.jbchem.a123875. [DOI] [PubMed] [Google Scholar]
  11. Klee C. B., Newton D. L., Ni W. C., Haiech J. Regulation of the calcium signal by calmodulin. Ciba Found Symp. 1986;122:162–182. doi: 10.1002/9780470513347.ch10. [DOI] [PubMed] [Google Scholar]
  12. Knight M. R., Campbell A. K., Smith S. M., Trewavas A. J. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature. 1991 Aug 8;352(6335):524–526. doi: 10.1038/352524a0. [DOI] [PubMed] [Google Scholar]
  13. Ling V., Snedden W. A., Shelp B. J., Assmann S. M. Analysis of a soluble calmodulin binding protein from fava bean roots: identification of glutamate decarboxylase as a calmodulin-activated enzyme. Plant Cell. 1994 Aug;6(8):1135–1143. doi: 10.1105/tpc.6.8.1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mayer R. R., Cherry J. H., Rhodes D. Effects of heat shock on amino Acid metabolism of cowpea cells. Plant Physiol. 1990 Oct;94(2):796–810. doi: 10.1104/pp.94.2.796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Minami Y., Kawasaki H., Suzuki K., Yahara I. The calmodulin-binding domain of the mouse 90-kDa heat shock protein. J Biol Chem. 1993 May 5;268(13):9604–9610. [PubMed] [Google Scholar]
  16. O'Neil K. T., DeGrado W. F. How calmodulin binds its targets: sequence independent recognition of amphiphilic alpha-helices. Trends Biochem Sci. 1990 Feb;15(2):59–64. doi: 10.1016/0968-0004(90)90177-d. [DOI] [PubMed] [Google Scholar]
  17. Poovaiah B. W., Reddy A. S. Calcium and signal transduction in plants. CRC Crit Rev Plant Sci. 1993;12(3):185–211. doi: 10.1080/07352689309701901. [DOI] [PubMed] [Google Scholar]
  18. Smith D. B., Johnson K. S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. doi: 10.1016/0378-1119(88)90005-4. [DOI] [PubMed] [Google Scholar]
  19. Streeter J. G., Thompson J. F. Anaerobic Accumulation of gamma-Aminobutyric Acid and Alanine in Radish Leaves (Raphanus sativus, L.). Plant Physiol. 1972 Apr;49(4):572–578. doi: 10.1104/pp.49.4.572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Streeter J. G., Thompson J. F. In Vivo and In Vitro Studies on gamma-Aminobutyric Acid Metabolism with the Radish Plant (Raphanus sativus, L.). Plant Physiol. 1972 Apr;49(4):579–584. doi: 10.1104/pp.49.4.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  22. Trewavas A., Gilroy S. Signal transduction in plant cells. Trends Genet. 1991 Nov-Dec;7(11-12):356–361. doi: 10.1016/0168-9525(91)90255-o. [DOI] [PubMed] [Google Scholar]
  23. Trewhella J. The solution structures of calmodulin and its complexes with synthetic peptides based on target enzyme binding domains. Cell Calcium. 1992 Jun-Jul;13(6-7):377–390. doi: 10.1016/0143-4160(92)90051-s. [DOI] [PubMed] [Google Scholar]
  24. Török K., Whitaker M. Taking a long, hard look at calmodulin's warm embrace. Bioessays. 1994 Apr;16(4):221–224. doi: 10.1002/bies.950160402. [DOI] [PubMed] [Google Scholar]
  25. Wallace W., Secor J., Schrader L. E. Rapid Accumulation of gamma-Aminobutyric Acid and Alanine in Soybean Leaves in Response to an Abrupt Transfer to Lower Temperature, Darkness, or Mechanical Manipulation. Plant Physiol. 1984 May;75(1):170–175. doi: 10.1104/pp.75.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Watillon B., Kettmann R., Boxus P., Burny A. A calcium/calmodulin-binding serine/threonine protein kinase homologous to the mammalian type II calcium/calmodulin-dependent protein kinase is expressed in plant cells. Plant Physiol. 1993 Apr;101(4):1381–1384. doi: 10.1104/pp.101.4.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES