Abstract
Microspore-derived (MD) embryos of Brassica napus L. cv Reston were used to test the effects of (+)-abscisic acid ([(+)-ABA]) and its metabolites, 8[prime]-hydroxyabscisic acid (8[prime]-OH ABA) and (-)-phaseic acid (PA), on the accumulation of very long-chain monounsaturated fatty acids (VLCMFAs) and induction of genes encoding a 19-kD oleosin protein and a [delta]15 desaturase during embryogenesis. Developing early to mid-cotyledonary MD embryos at 16 to 19 d in culture were treated with 10 [mu]M hormone/metabolite for 4 d. At various times during incubation, embryos and medium were analyzed to determine levels of hormone/metabolite, VLCMFAs, and oleosin or [delta]15 desaturase transcripts. The VLCMFAs, 20:1 and 22:1, primarily in triacylglycerols, increased by 200% after 72 h in the presence of (+)-ABA and 8[prime]-OH ABA relative to the control. In contrast, treatment with PA for 72 h had little effect (20% increase) on the level of VLCMFAs. The first 24 to 72 h of (+)-ABA treatment were critical in the induction of VLCMFA biosynthesis, with 8[prime]-OH ABA lagging slightly behind (+)-ABA in promoting this response. The accumulation of VLCMFAs was positively correlated with an increase in elongase activity. (+)-ABA and its 8[prime]-OH ABA metabolite induced the accumulation of a 19-kD oleosin transcript within 2 to 4 h in culture. In addition, both (+)-ABA and 8[prime]-OH ABA induced the same level of [delta]15 desaturase transcript by 8 h. PA had no effect on the induction of either oleosin or [delta]15 desaturase transcripts. To our knowledge, this is the first report of the biological activity of 8[prime]-OH ABA and of stimulatory effects of (+)-ABA and 8[prime]-OH ABA on lipid and oleosin biosynthesis.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balsevich J. J., Cutler A. J., Lamb N., Friesen L. J., Kurz E. U., Perras M. R., Abrams S. R. Response of Cultured Maize Cells to (+)-Abscisic Acid, (-)-Abscisic Acid, and Their Metabolites. Plant Physiol. 1994 Sep;106(1):135–142. doi: 10.1104/pp.106.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowman V. B., Huang V., Huang A. H. Expression of lipid body protein gene during maize seed development. Spatial, temporal, and hormonal regulation. J Biol Chem. 1988 Jan 25;263(3):1476–1481. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Churchill G. C., Ewan B., Reaney M. J., Abrams S. R., Gusta L. V. Structure-Activity Relationships of Abscisic Acid Analogs Based on the Induction of Freezing Tolerance in Bromegrass (Bromus inermis Leyss) Cell Cultures. Plant Physiol. 1992 Dec;100(4):2024–2029. doi: 10.1104/pp.100.4.2024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fehling E., Murphy D. J., Mukherjee K. D. Biosynthesis of triacylglycerols containing very long chain monounsaturated acyl moieties in developing seeds. Plant Physiol. 1990 Oct;94(2):492–498. doi: 10.1104/pp.94.2.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillard D. F., Walton D. C. Abscisic Acid Metabolism by a Cell-free Preparation from Echinocystis lobata Liquid Endoserum. Plant Physiol. 1976 Dec;58(6):790–795. doi: 10.1104/pp.58.6.790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hatzopoulos P., Franz G., Choy L., Sung R. Z. Interaction of nuclear factors with upstream sequences of a lipid body membrane protein gene from carrot. Plant Cell. 1990 May;2(5):457–467. doi: 10.1105/tpc.2.5.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill R. D., Liu J. H., Durnin D., Lamb N., Shaw A., Abrams S. R. Abscisic Acid Structure-Activity Relationships in Barley Aleurone Layers and Protoplasts (Biological Activity of Optically Active, Oxygenated Abscisic Acid Analogs). Plant Physiol. 1995 Jun;108(2):573–579. doi: 10.1104/pp.108.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holbrook L. A., van Rooijen G. J., Wilen R. W., Moloney M. M. Oilbody Proteins in Microspore-Derived Embryos of Brassica napus: Hormonal, Osmotic, and Developmental Regulation of Synthesis. Plant Physiol. 1991 Nov;97(3):1051–1058. doi: 10.1104/pp.97.3.1051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawata E. E., Cheung A. Y. Molecular analysis of an aurea photosynthetic mutant (Su/Su) in tobacco: LHCP depletion leads to pleiotropic mutant phenotypes. EMBO J. 1990 Dec;9(12):4197–4203. doi: 10.1002/j.1460-2075.1990.tb07644.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson A. J., Reaney MJT., Wilen R. W., Lamb N., Abrams S. R., Gusta L. V. Effects of Abscisic Acid Metabolites and Analogs on Freezing Tolerance and Gene Expression in Bromegrass (Bromus inermis Leyss) Cell Cultures. Plant Physiol. 1994 Jul;105(3):823–830. doi: 10.1104/pp.105.3.823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slocombe S. P., Piffanelli P., Fairbairn D., Bowra S., Hatzopoulos P., Tsiantis M., Murphy D. J. Temporal and tissue-specific regulation of a Brassica napus stearoyl-acyl carrier protein desaturase gene. Plant Physiol. 1994 Apr;104(4):1167–1176. doi: 10.1104/pp.104.4.1167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor D. C., Barton D. L., Rioux K. P., Mackenzie S. L., Reed D. W., Underhill E. W., Pomeroy M. K., Weber N. Biosynthesis of Acyl Lipids Containing Very-Long Chain Fatty Acids in Microspore-Derived and Zygotic Embryos of Brassica napus L. cv Reston. Plant Physiol. 1992 Aug;99(4):1609–1618. doi: 10.1104/pp.99.4.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor D. C., Weber N., Hogge L. R., Underhill E. W. A simple enzymatic method for the preparation of radiolabeled erucoyl-CoA and other long-chain fatty acyl-CoAs and their characterization by mass spectrometry. Anal Biochem. 1990 Feb 1;184(2):311–316. doi: 10.1016/0003-2697(90)90686-4. [DOI] [PubMed] [Google Scholar]
- Thomas T. L. Gene expression during plant embryogenesis and germination: an overview. Plant Cell. 1993 Oct;5(10):1401–1410. doi: 10.1105/tpc.5.10.1401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker-Simmons M. K., Anderberg R. J., Rose P. A., Abrams S. R. Optically pure abscisic Acid analogs-tools for relating germination inhibition and gene expression in wheat embryos. Plant Physiol. 1992 Jun;99(2):501–507. doi: 10.1104/pp.99.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilen R. W., Hays D. B., Mandel R. M., Abrams S. R., Moloney M. M. Competitive Inhibition of Abscisic Acid-Regulated Gene Expression by Stereoisomeric Acetylenic Analogs of Abscisic Acid. Plant Physiol. 1993 Feb;101(2):469–476. doi: 10.1104/pp.101.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilen R. W., Mandel R. M., Pharis R. P., Holbrook L. A., Moloney M. M. Effects of Abscisic Acid and High Osmoticum on Storage Protein Gene Expression in Microspore Embryos of Brassica napus. Plant Physiol. 1990 Nov;94(3):875–881. doi: 10.1104/pp.94.3.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamane H., Fujioka S., Spray C. R., Phinney B. O., Macmillan J., Gaskin P., Takahashi N. Endogenous Gibberellins from Sporophytes of Two Tree Ferns, Cibotium glaucum and Dicksonia antarctica. Plant Physiol. 1988 Mar;86(3):857–862. doi: 10.1104/pp.86.3.857. [DOI] [PMC free article] [PubMed] [Google Scholar]