Abstract
The osmoprotectant glycine betaine is synthesized via the path-way choline -> betaine aldehyde -> glycine betaine. In spinach (Spinacia oleracea), the first step is catalyzed by choline monooxygenase (CMO), and the second is catalyzed by betaine aldehyde dehydrogenase. Because betaine aldehyde is unstable and not easily detected, we developed a coupled radiometric assay for CMO. [14C]Choline is used as substrate; NAD+ and betaine aldehyde dehydrogenase prepared from Escherichia coli are added to oxidize [14C]betaine aldehyde to [14C]glycine betaine, which is isolated by ion exchange. The assay was used in the purification of CMO from leaves of salinized spinach. The 10-step procedure included polyethylene glycol precipitation, polyethyleneimine precipitation, hydrophobic interaction, anion exchange on choline-Sepharose, dimethyldiethanolamine-Sepharose, and Mono Q, hydroxyapatite, gel filtration, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Following gel filtration, overall purification was about 600-fold and recovery of activity was 0.5%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a polypeptide with a molecular mass of 45 kD. Taken with the value of 98 kD estimated for native CMO (R. Brouquisse, P. Weigel, D. Rhodes, C.F. Yocum, A.D. Hanson [1989] Plant Physiol 90: 322-329), this indicates that CMO is a homodimer. CMO preparations were red-brown, showed absorption maxima at 329 and 459 nm, and lost color upon dithionite addition, suggesting that CMO is an iron-sulfur protein.
Full Text
The Full Text of this article is available as a PDF (842.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atkin C. L., Thelander L., Reichard P., Lang G. Iron and free radical in ribonucleotide reductase. Exchange of iron and Mössbauer spectroscopy of the protein B2 subunit of the Escherichia coli enzyme. J Biol Chem. 1973 Nov 10;248(21):7464–7472. [PubMed] [Google Scholar]
- Beinert H. Semi-micro methods for analysis of labile sulfide and of labile sulfide plus sulfane sulfur in unusually stable iron-sulfur proteins. Anal Biochem. 1983 Jun;131(2):373–378. doi: 10.1016/0003-2697(83)90186-0. [DOI] [PubMed] [Google Scholar]
- Bernhardt F. H., Heymann E., Traylor P. S. Chemical and spectral properties of putidamonooxin, the iron-containing and acid-labile-sulfur-containing monooxygenase of a 4-methoxybenzoate O-demethylase from Pseudomonas putida. Eur J Biochem. 1978 Dec 1;92(1):209–223. doi: 10.1111/j.1432-1033.1978.tb12739.x. [DOI] [PubMed] [Google Scholar]
- Bill E., Bernhardt F. H., Trautwein A. X. Mössbauer studies on the active Fe ... [2Fe-2S] site of putidamonooxin, its electron transport and dioxygen activation mechanism. Eur J Biochem. 1981 Dec;121(1):39–46. doi: 10.1111/j.1432-1033.1981.tb06426.x. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Csonka L. N. Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev. 1989 Mar;53(1):121–147. doi: 10.1128/mr.53.1.121-147.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Droux M., Jacquot J. P., Miginac-Maslow M., Gadal P., Huet J. C., Crawford N. A., Yee B. C., Buchanan B. B. Ferredoxin-thioredoxin reductase, an iron-sulfur enzyme linking light to enzyme regulation in oxygenic photosynthesis: purification and properties of the enzyme from C3, C4, and cyanobacterial species. Arch Biochem Biophys. 1987 Feb 1;252(2):426–439. doi: 10.1016/0003-9861(87)90049-x. [DOI] [PubMed] [Google Scholar]
- Gatti D. L., Palfey B. A., Lah M. S., Entsch B., Massey V., Ballou D. P., Ludwig M. L. The mobile flavin of 4-OH benzoate hydroxylase. Science. 1994 Oct 7;266(5182):110–114. doi: 10.1126/science.7939628. [DOI] [PubMed] [Google Scholar]
- Gegenheimer P. Preparation of extracts from plants. Methods Enzymol. 1990;182:174–193. doi: 10.1016/0076-6879(90)82016-u. [DOI] [PubMed] [Google Scholar]
- Haubrich D. R., Gerber N. H. Choline dehydrogenase. Assay, properties and inhibitors. Biochem Pharmacol. 1981 Nov 1;30(21):2993–3000. doi: 10.1016/0006-2952(81)90265-3. [DOI] [PubMed] [Google Scholar]
- Holmström K. O., Welin B., Mandal A., Kristiansdottir I., Teeri T. H., Lamark T., Strøm A. R., Palva E. T. Production of the Escherichia coli betaine-aldehyde dehydrogenase, an enzyme required for the synthesis of the osmoprotectant glycine betaine, in transgenic plants. Plant J. 1994 Nov;6(5):749–758. doi: 10.1046/j.1365-313x.1994.6050749.x. [DOI] [PubMed] [Google Scholar]
- Karlin K. D. Metalloenzymes, structural motifs, and inorganic models. Science. 1993 Aug 6;261(5122):701–708. doi: 10.1126/science.7688141. [DOI] [PubMed] [Google Scholar]
- Landfald B., Strøm A. R. Choline-glycine betaine pathway confers a high level of osmotic tolerance in Escherichia coli. J Bacteriol. 1986 Mar;165(3):849–855. doi: 10.1128/jb.165.3.849-855.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCue K. F., Hanson A. D. Salt-inducible betaine aldehyde dehydrogenase from sugar beet: cDNA cloning and expression. Plant Mol Biol. 1992 Jan;18(1):1–11. doi: 10.1007/BF00018451. [DOI] [PubMed] [Google Scholar]
- Nomura M., Ishitani M., Takabe T., Rai A. K., Takabe T. Synechococcus sp. PCC7942 Transformed with Escherichia coli bet Genes Produces Glycine Betaine from Choline and Acquires Resistance to Salt Stress. Plant Physiol. 1995 Mar;107(3):703–708. doi: 10.1104/pp.107.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohta-Fukuyama M., Miyake Y., Emi S., Yamano T. Identification and properties of the prosthetic group of choline oxidase from Alcaligenes sp. J Biochem. 1980 Jul;88(1):197–203. [PubMed] [Google Scholar]
- Rathinasabapathi B., McCue K. F., Gage D. A., Hanson A. D. Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta. 1994;193(2):155–162. doi: 10.1007/BF00192524. [DOI] [PubMed] [Google Scholar]
- Rozwadowski K. L., Khachatourians G. G., Selvaraj G. Choline oxidase, a catabolic enzyme in Arthrobacter pascens, facilitates adaptation to osmotic stress in Escherichia coli. J Bacteriol. 1991 Jan;173(2):472–478. doi: 10.1128/jb.173.2.472-478.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sundberg L., Porath J. Preparation of adsorbents for biospecific affinity chromatography. Attachment of group-containing ligands to insoluble polymers by means of bifuctional oxiranes. J Chromatogr. 1974 Mar 13;90(1):87–98. doi: 10.1016/s0021-9673(01)94777-6. [DOI] [PubMed] [Google Scholar]
- Tremblay P. A., Kates M. Chemical synthesis of sn-3-phosphatidyl sulfocholine, a sulfonium analog of lecithin. Can J Biochem. 1979 Jun;57(6):595–604. doi: 10.1139/o79-075. [DOI] [PubMed] [Google Scholar]
- Weigel P., Weretilnyk E. A., Hanson A. D. Betaine aldehyde oxidation by spinach chloroplasts. Plant Physiol. 1986 Nov;82(3):753–759. doi: 10.1104/pp.82.3.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weretilnyk E. A., Hanson A. D. Betaine aldehyde dehydrogenase polymorphism in spinach: genetic and biochemical characterization. Biochem Genet. 1988 Feb;26(1-2):143–151. doi: 10.1007/BF00555495. [DOI] [PubMed] [Google Scholar]
- Woodland M. P., Dalton H. Purification and characterization of component A of the methane monooxygenase from Methylococcus capsulatus (Bath). J Biol Chem. 1984 Jan 10;259(1):53–59. [PubMed] [Google Scholar]