Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Jun;108(2):597–607. doi: 10.1104/pp.108.2.597

Analysis of ethylene signal-transduction kinetics associated with seedling-growth response and chitinase induction in wild-type and mutant arabidopsis.

Q G Chen 1, A B Bleecker 1
PMCID: PMC157379  PMID: 7610160

Abstract

Kinetic aspects of ethylene-mediated signal transduction leading to seedling-growth inhibition and chitinase induction in Arabidopsis were investigated by the introduction of defined mutations in components of these pathways. Dose-response analysis of wild-type responses indicated that the rate-limiting steps for seedling responses and Arabidopsis basic-chitinase induction displayed Michaelis-Menten kinetics with apparent dissociation constants of the response (Kr) of 0.1 and 1.4 microL L-1 ethylene, respectively. In the ethylene-insensitive etr1-1 and ein2-32 mutant lines, both Arabidopsis basic-chitinase induction and seedling-growth responses were completely disrupted, whereas the weaker etr1-2 allele eliminated the chitinase-induction response but only partially disrupted the seedling responses. A heterologous reporter gene containing the chitinase promoter from bean (bean basic-chitinase-beta-glucuronidase) displayed subsensitive kinetics (Kr 120 microL L-1 ethylene) compared to the response of the endogenous basic-chitinase response (Kr 1.4 microL L-1 ethylene). A model for ethylene signal transduction that accounts for the observed variation in ethylene dose-response relationships is presented. The relationship between the model and the biochemical mechanisms of well-characterized signal-transduction systems in animals is discussed.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bleecker A. B., Estelle M. A., Somerville C., Kende H. Insensitivity to Ethylene Conferred by a Dominant Mutation in Arabidopsis thaliana. Science. 1988 Aug 26;241(4869):1086–1089. doi: 10.1126/science.241.4869.1086. [DOI] [PubMed] [Google Scholar]
  2. Bourret R. B., Borkovich K. A., Simon M. I. Signal transduction pathways involving protein phosphorylation in prokaryotes. Annu Rev Biochem. 1991;60:401–441. doi: 10.1146/annurev.bi.60.070191.002153. [DOI] [PubMed] [Google Scholar]
  3. Brederode F. T., Linthorst H. J., Bol J. F. Differential induction of acquired resistance and PR gene expression in tobacco by virus infection, ethephon treatment, UV light and wounding. Plant Mol Biol. 1991 Dec;17(6):1117–1125. doi: 10.1007/BF00028729. [DOI] [PubMed] [Google Scholar]
  4. Broglie K. E., Biddle P., Cressman R., Broglie R. Functional analysis of DNA sequences responsible for ethylene regulation of a bean chitinase gene in transgenic tobacco. Plant Cell. 1989 Jun;1(6):599–607. doi: 10.1105/tpc.1.6.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chang C., Kwok S. F., Bleecker A. B., Meyerowitz E. M. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science. 1993 Oct 22;262(5133):539–544. doi: 10.1126/science.8211181. [DOI] [PubMed] [Google Scholar]
  6. Chang C., Meyerowitz E. M. Molecular cloning and DNA sequence of the Arabidopsis thaliana alcohol dehydrogenase gene. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1408–1412. doi: 10.1073/pnas.83.5.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Freissmuth M., Casey P. J., Gilman A. G. G proteins control diverse pathways of transmembrane signaling. FASEB J. 1989 Aug;3(10):2125–2131. [PubMed] [Google Scholar]
  8. Goeschl J. D. Concentration dependencies of some effects of ethylene on etiolated pea, peanut, bean, and cotton seedlings. Plant Physiol. 1975 Apr;55(4):670–677. doi: 10.1104/pp.55.4.670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hensel L. L., Grbić V., Baumgarten D. A., Bleecker A. B. Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in arabidopsis. Plant Cell. 1993 May;5(5):553–564. doi: 10.1105/tpc.5.5.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kieber J. J., Rothenberg M., Roman G., Feldmann K. A., Ecker J. R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell. 1993 Feb 12;72(3):427–441. doi: 10.1016/0092-8674(93)90119-b. [DOI] [PubMed] [Google Scholar]
  11. Koshland D. E., Jr, Goldbeter A., Stock J. B. Amplification and adaptation in regulatory and sensory systems. Science. 1982 Jul 16;217(4556):220–225. doi: 10.1126/science.7089556. [DOI] [PubMed] [Google Scholar]
  12. Raz V., Fluhr R. Ethylene Signal Is Transduced via Protein Phosphorylation Events in Plants. Plant Cell. 1993 May;5(5):523–530. doi: 10.1105/tpc.5.5.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Samac D. A., Hironaka C. M., Yallaly P. E., Shah D. M. Isolation and Characterization of the Genes Encoding Basic and Acidic Chitinase in Arabidopsis thaliana. Plant Physiol. 1990 Jul;93(3):907–914. doi: 10.1104/pp.93.3.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Starrett D. A., Laties G. G. Ethylene and Wound-Induced Gene Expression in the Preclimacteric Phase of Ripening Avocado Fruit and Mesocarp Discs. Plant Physiol. 1993 Sep;103(1):227–234. doi: 10.1104/pp.103.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Valvekens D., Van Montagu M., Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. doi: 10.1073/pnas.85.15.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Van Der Straeten D., Djudzman A., Van Caeneghem W., Smalle J., Van Montagu M. Genetic and Physiological Analysis of a New Locus in Arabidopsis That Confers Resistance to 1-Aminocyclopropane-1-Carboxylic Acid and Ethylene and Specifically Affects the Ethylene Signal Transduction Pathway. Plant Physiol. 1993 Jun;102(2):401–408. doi: 10.1104/pp.102.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Weiss C., Bevan M. Ethylene and a Wound Signal Modulate Local and Systemic Transcription of win2 Genes in Transgenic Potato Plants. Plant Physiol. 1991 Jul;96(3):943–951. doi: 10.1104/pp.96.3.943. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES