Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Jun;108(2):623–632. doi: 10.1104/pp.108.2.623

The Physiological Role of Abscisic Acid in Eliciting Turion Morphogenesis.

C C Smart 1, A J Fleming 1, K Chaloupkova 1, D E Hanke 1
PMCID: PMC157382  PMID: 12228499

Abstract

The exogenous application of hormones has led to their implication in a number of processes within the plant. However, proof of their function in vivo depends on quantitative data demonstrating that the exogenous concentration used to elicit a response leads to tissue hormone levels within the physiological range. Such proof is often lacking in many investigations. We are using abscisic acid (ABA)-induced turion formation in Spirodela polyrrhiza L. to investigate the mechanism by which a hormone can trigger a morphogenic switch. In this paper, we demonstrate that the exogenous concentration of ABA used to induce turions leads to tissue concentrations of ABA within the physiological range, as quantified by both enzyme-linked immunosorbent assay and high-performance liquid chromatography/gas chromatography-electron capture detection analysis. These results are consistent with ABA having a physiological role in turion formation, and they provide an estimate of the changes in endogenous ABA concentration required if environmental effectors of turion formation (e.g. nitrate deficiency, cold) act via an increased level of ABA. In addition, we show that the (+)- and (-)-enantiomers of ABA are equally effective in inducing turions. Moreover, comparison of the ABA; levels attained after treatment with (+)-, (-)-, and ([plus or minus])-ABA and their effect on turion induction and comparison of the effectiveness of ABA on turion induction under different pH regimes suggest that ABA most likely interacts with a plasmalemma-located receptor system to induce turion formation.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan A. C., Fricker M. D., Ward J. L., Beale M. H., Trewavas A. J. Two Transduction Pathways Mediate Rapid Effects of Abscisic Acid in Commelina Guard Cells. Plant Cell. 1994 Sep;6(9):1319–1328. doi: 10.1105/tpc.6.9.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allan A. C., Trewavas A. J. Abscisic Acid and Gibberellin Perception: Inside or Out? Plant Physiol. 1994 Apr;104(4):1107–1108. [PMC free article] [PubMed] [Google Scholar]
  3. Anderson B. E., Ward J. M., Schroeder J. I. Evidence for an Extracellular Reception Site for Abscisic Acid in Commelina Guard Cells. Plant Physiol. 1994 Apr;104(4):1177–1183. doi: 10.1104/pp.104.4.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Balsevich J. J., Cutler A. J., Lamb N., Friesen L. J., Kurz E. U., Perras M. R., Abrams S. R. Response of Cultured Maize Cells to (+)-Abscisic Acid, (-)-Abscisic Acid, and Their Metabolites. Plant Physiol. 1994 Sep;106(1):135–142. doi: 10.1104/pp.106.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Churchill G. C., Ewan B., Reaney M. J., Abrams S. R., Gusta L. V. Structure-Activity Relationships of Abscisic Acid Analogs Based on the Induction of Freezing Tolerance in Bromegrass (Bromus inermis Leyss) Cell Cultures. Plant Physiol. 1992 Dec;100(4):2024–2029. doi: 10.1104/pp.100.4.2024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goliber T. E., Feldman L. J. Osmotic stress, endogenous abscisic acid and the control of leaf morphology in Hippuris vulgaris L. Plant Cell Environ. 1989;12(2):163–171. doi: 10.1111/j.1365-3040.1989.tb01929.x. [DOI] [PubMed] [Google Scholar]
  7. Harris M. J., Outlaw W. H., Mertens R., Weiler E. W. Water-stress-induced changes in the abscisic acid content of guard cells and other cells of Vicia faba L. leaves as determined by enzyme-amplified immunoassay. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2584–2588. doi: 10.1073/pnas.85.8.2584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kaiser W. M., Hartung W. Uptake and Release of Abscisic Acid by Isolated Photoautotrophic Mesophyll Cells, Depending on pH Gradients. Plant Physiol. 1981 Jul;68(1):202–206. doi: 10.1104/pp.68.1.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Knox J. P., Galfre G. Use of monoclonal antibodies to separate the enantiomers of abscisic acid. Anal Biochem. 1986 May 15;155(1):92–94. doi: 10.1016/0003-2697(86)90230-7. [DOI] [PubMed] [Google Scholar]
  10. Perata P., Picciarelli P., Alpi A. Pattern of Variations in Abscisic Acid Content in Suspensors, Embryos, and Integuments of Developing Phaseolus coccineus Seeds. Plant Physiol. 1990 Dec;94(4):1776–1780. doi: 10.1104/pp.94.4.1776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Perry T. O., Byrne O. R. Turion Induction in Spirodela polyrrhiza by Abscisic Acid. Plant Physiol. 1969 May;44(5):784–785. doi: 10.1104/pp.44.5.784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Roberts J. K., Wemmer D., Ray P. M., Jardetzky O. Regulation of Cytoplasmic and Vacuolar pH in Maize Root Tips under Different Experimental Conditions. Plant Physiol. 1982 Jun;69(6):1344–1347. doi: 10.1104/pp.69.6.1344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schwartz A., Wu W. H., Tucker E. B., Assmann S. M. Inhibition of inward K+ channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):4019–4023. doi: 10.1073/pnas.91.9.4019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Smart C. C., Fleming A. J. A plant gene with homology to D-myo-inositol-3-phosphate synthase is rapidly and spatially up-regulated during an abscisic-acid-induced morphogenic response in Spirodela polyrrhiza. Plant J. 1993 Aug;4(2):279–293. doi: 10.1046/j.1365-313x.1993.04020279.x. [DOI] [PubMed] [Google Scholar]
  15. Sondheimer E., Galson E. C., Chang Y. P., Walton D. C. Asymmetry, its importance to the action and metabolism of abscisic Acid. Science. 1971 Nov 19;174(4011):829–831. doi: 10.1126/science.174.4011.829. [DOI] [PubMed] [Google Scholar]
  16. Stewart G. R. Abscisic acid and morphogenesis in Lemna polyrhiza L. Nature. 1969 Jan 4;221(5175):61–62. doi: 10.1038/221061a0. [DOI] [PubMed] [Google Scholar]
  17. Walker-Simmons M. K., Anderberg R. J., Rose P. A., Abrams S. R. Optically pure abscisic Acid analogs-tools for relating germination inhibition and gene expression in wheat embryos. Plant Physiol. 1992 Jun;99(2):501–507. doi: 10.1104/pp.99.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Walker-Simmons M. ABA Levels and Sensitivity in Developing Wheat Embryos of Sprouting Resistant and Susceptible Cultivars. Plant Physiol. 1987 May;84(1):61–66. doi: 10.1104/pp.84.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES