Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Jun;108(2):641–649. doi: 10.1104/pp.108.2.641

Vacuolar H(+)-translocating pyrophosphatase is induced by anoxia or chilling in seedlings of rice.

G D Carystinos 1, H R MacDonald 1, A F Monroy 1, R S Dhindsa 1, R J Poole 1
PMCID: PMC157384  PMID: 7610161

Abstract

The present study was undertaken to determine whether vacuolar H(+)-pyrophosphatase (V-PPase) might replace vacuolar H(+)-ATPase under energy stress due to anoxia or chilling in anoxia-tolerant species such as rice (Oryza sativa L.) and corn (Zea mays L.). The relative transcript level of V-PPase in rice seedlings, like that of alcohol dehydrogenase 1, increased greatly under anoxia and declined again when the seedlings were returned to air. However, the distribution of transcripts in root, shoot, and seed differed somewhat from that of alcohol dehydrogenase 1. Immunoreactive V-PPase protein and V-PPase enzyme specific activity in a tonoplast fraction from rice seedlings increased progressively with time of anoxia or chilling at 10 degrees C, showing a 75-fold increase after 6 d of anoxia, compared with a 2-fold increase of vacuolar H(+)-ATPase activity. When the seedlings were returned to air, the specific activity returned to its initial level within 2 d. After 6 d of chilling at 10 degrees C, V-PPase specific activity reached a level 20-fold of that at 25 degrees C. In microsomes of corn roots, V-PPase specific activity did not respond to anoxia but was constitutively high. It is proposed that V-PPase can be an important element in the survival strategies of plants under hypoxic or chilling stress.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bewsey K. E., Johnson M. E., Huff J. P. Rapid isolation and purification of DNA from agarose gels: the phenol-freeze-fracture method. Biotechniques. 1991 Jun;10(6):724–725. [PubMed] [Google Scholar]
  2. Bowman E. J., Siebers A., Altendorf K. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7972–7976. doi: 10.1073/pnas.85.21.7972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Christie P. J., Hahn M., Walbot V. Low-temperature accumulation of alcohol dehydrogenase-1 mRNA and protein activity in maize and rice seedlings. Plant Physiol. 1991 Mar;95(3):699–706. doi: 10.1104/pp.95.3.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davies J. M., Poole R. J., Rea P. A., Sanders D. Potassium transport into plant vacuoles energized directly by a proton-pumping inorganic pyrophosphatase. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11701–11705. doi: 10.1073/pnas.89.24.11701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Glotzer M., Murray A. W., Kirschner M. W. Cyclin is degraded by the ubiquitin pathway. Nature. 1991 Jan 10;349(6305):132–138. doi: 10.1038/349132a0. [DOI] [PubMed] [Google Scholar]
  7. Hedrich R., Kurkdjian A., Guern J., Flügge U. I. Comparative studies on the electrical properties of the H+ translocating ATPase and pyrophosphatase of the vacuolar-lysosomal compartment. EMBO J. 1989 Oct;8(10):2835–2841. doi: 10.1002/j.1460-2075.1989.tb08430.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Johnson J., Cobb B. G., Drew M. C. Hypoxic Induction of Anoxia Tolerance in Root Tips of Zea mays. Plant Physiol. 1989 Nov;91(3):837–841. doi: 10.1104/pp.91.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kennedy R. A., Rumpho M. E., Fox T. C. Anaerobic metabolism in plants. Plant Physiol. 1992 Sep;100(1):1–6. doi: 10.1104/pp.100.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lyons J. M., Raison J. K. Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury. Plant Physiol. 1970 Apr;45(4):386–389. doi: 10.1104/pp.45.4.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Maeshima M., Yoshida S. Purification and properties of vacuolar membrane proton-translocating inorganic pyrophosphatase from mung bean. J Biol Chem. 1989 Nov 25;264(33):20068–20073. [PubMed] [Google Scholar]
  12. McElfresh K. C., Chourey P. S. Anaerobiosis induces transcription but not translation of sucrose synthase in maize. Plant Physiol. 1988 Jun;87(2):542–546. doi: 10.1104/pp.87.2.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Menegus F., Cattaruzza L., Mattana M., Beffagna N., Ragg E. Response to Anoxia in Rice and Wheat Seedlings: Changes in the pH of Intracellular Compartments, Glucose-6-Phosphate Level, and Metabolic Rate. Plant Physiol. 1991 Mar;95(3):760–767. doi: 10.1104/pp.95.3.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mertens E., Larondelle Y., Hers H. G. Induction of pyrophosphate:fructose 6-phosphate 1-phosphotransferase by anoxia in rice seedlings. Plant Physiol. 1990 Jun;93(2):584–587. doi: 10.1104/pp.93.2.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mocquot B., Prat C., Mouches C., Pradet A. Effect of anoxia on energy charge and protein synthesis in rice embryo. Plant Physiol. 1981 Sep;68(3):636–640. doi: 10.1104/pp.68.3.636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Monroy A. F., Sarhan F., Dhindsa R. S. Cold-Induced Changes in Freezing Tolerance, Protein Phosphorylation, and Gene Expression (Evidence for a Role of Calcium). Plant Physiol. 1993 Aug;102(4):1227–1235. doi: 10.1104/pp.102.4.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Paul A. L., Ferl R. J. In vivo footprinting reveals unique cis-elements and different modes of hypoxic induction in maize Adh1 and Adh2. Plant Cell. 1991 Feb;3(2):159–168. doi: 10.1105/tpc.3.2.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Raymond P., Al-Ani A., Pradet A. ATP Production by Respiration and Fermentation, and Energy Charge during Aerobiosis and Anaerobiosis in Twelve Fatty and Starchy Germinating Seeds. Plant Physiol. 1985 Nov;79(3):879–884. doi: 10.1104/pp.79.3.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rea P. A., Poole R. J. Proton-Translocating Inorganic Pyrophosphatase in Red Beet (Beta vulgaris L.) Tonoplast Vesicles. Plant Physiol. 1985 Jan;77(1):46–52. doi: 10.1104/pp.77.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ricard B., Rivoal J., Spiteri A., Pradet A. Anaerobic stress induces the transcription and translation of sucrose synthase in rice. Plant Physiol. 1991 Mar;95(3):669–674. doi: 10.1104/pp.95.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Roberts J. K., Callis J., Jardetzky O., Walbot V., Freeling M. Cytoplasmic acidosis as a determinant of flooding intolerance in plants. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6029–6033. doi: 10.1073/pnas.81.19.6029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Roberts J. K., Chang K., Webster C., Callis J., Walbot V. Dependence of Ethanolic Fermentation, Cytoplasmic pH Regulation, and Viability on the Activity of Alcohol Dehydrogenase in Hypoxic Maize Root Tips. Plant Physiol. 1989 Apr;89(4):1275–1278. doi: 10.1104/pp.89.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Roberts J. K. Observation of uridine triphosphate:glucose-1-phosphate uridylyltransferase activity in maize root tips by saturation transfer 31P-NMR. Estimation of cytoplasmic PP. Biochim Biophys Acta. 1990 Jan 23;1051(1):29–36. doi: 10.1016/0167-4889(90)90170-i. [DOI] [PubMed] [Google Scholar]
  24. Sarafian V., Kim Y., Poole R. J., Rea P. A. Molecular cloning and sequence of cDNA encoding the pyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1775–1779. doi: 10.1073/pnas.89.5.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sarafian V., Poole R. J. Purification of an h-translocating inorganic pyrophosphatase from vacuole membranes of red beet. Plant Physiol. 1989 Sep;91(1):34–38. doi: 10.1104/pp.91.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schmidt A. L., Briskin D. P. Energy transduction in tonoplast vesicles from red beet (Beta vulgaris L.) storage tissue: H+/substrate stoichiometries for the H(+)-ATPase and H(+)-PPase. Arch Biochem Biophys. 1993 Feb 15;301(1):165–173. doi: 10.1006/abbi.1993.1129. [DOI] [PubMed] [Google Scholar]
  27. Shanklin J., Jabben M., Vierstra R. D. Red light-induced formation of ubiquitin-phytochrome conjugates: Identification of possible intermediates of phytochrome degradation. Proc Natl Acad Sci U S A. 1987 Jan;84(2):359–363. doi: 10.1073/pnas.84.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stewart J. M., Guinn G. Chilling injury and changes in adenosine triphosphate of cotton seedlings. Plant Physiol. 1969 Apr;44(4):605–608. doi: 10.1104/pp.44.4.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tanaka Y., Chiba K., Maeda M., Maeshima M. Molecular cloning of cDNA for vacuolar membrane proton-translocating inorganic pyrophosphatase in Hordeum vulgare. Biochem Biophys Res Commun. 1993 Feb 15;190(3):1110–1114. doi: 10.1006/bbrc.1993.1164. [DOI] [PubMed] [Google Scholar]
  30. Xie Y., Wu R. Rice alcohol dehydrogenase genes: anaerobic induction, organ specific expression and characterization of cDNA clones. Plant Mol Biol. 1989 Jul;13(1):53–68. doi: 10.1007/BF00027335. [DOI] [PubMed] [Google Scholar]
  31. Yoshida S. Low Temperature-Induced Cytoplasmic Acidosis in Cultured Mung Bean (Vigna radiata [L.] Wilczek) Cells. Plant Physiol. 1994 Apr;104(4):1131–1138. doi: 10.1104/pp.104.4.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES