Abstract
Antigens closely resembling or identical to the three glycolytic enzyme proteins phosphate-glycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, and aldolase are found in situ in the nucleus of the leaf mesophyll cells of pea (Pisum sativum L.). These proteins have already been identified in vertebrate nuclei. Apparently, these enzymes are nuclear proteins with "secondary" roles not directly related to their enzymatic function in carbon metabolism in both animals and plants.
Full Text
The Full Text of this article is available as a PDF (3.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Dingwall C., Laskey R. A. Nuclear targeting sequences--a consensus? Trends Biochem Sci. 1991 Dec;16(12):478–481. doi: 10.1016/0968-0004(91)90184-w. [DOI] [PubMed] [Google Scholar]
- Grosse F., Nasheuer H. P., Scholtissek S., Schomburg U. Lactate dehydrogenase and glyceraldehyde-phosphate dehydrogenase are single-stranded DNA-binding proteins that affect the DNA-polymerase-alpha-primase complex. Eur J Biochem. 1986 Nov 3;160(3):459–467. doi: 10.1111/j.1432-1033.1986.tb10062.x. [DOI] [PubMed] [Google Scholar]
- Jindal H. K., Vishwanatha J. K. Functional identity of a primer recognition protein as phosphoglycerate kinase. J Biol Chem. 1990 Apr 25;265(12):6540–6543. [PubMed] [Google Scholar]
- Jindal H. K., Vishwanatha J. K. Purification and characterization of primer recognition proteins from HeLa cells. Biochemistry. 1990 May 22;29(20):4767–4773. doi: 10.1021/bi00472a004. [DOI] [PubMed] [Google Scholar]
- Karpel R. L., Burchard A. C. A basic isozyme of yeast glyceraldehyde-3-phosphate dehydrogenase with nucleic acid helix-destabilizing activity. Biochim Biophys Acta. 1981 Jul 27;654(2):256–267. doi: 10.1016/0005-2787(81)90180-5. [DOI] [PubMed] [Google Scholar]
- Kochman M., Mas M. T. Spectral evidence for distinct mode of interaction of nucleotides with rabbit muscle and rabbit liver aldolase. Biochim Biophys Acta. 1981 Jan 30;667(1):218–222. doi: 10.1016/0005-2795(81)90083-0. [DOI] [PubMed] [Google Scholar]
- Lenstra J. A., van Raaij A. J., Bloemendal H. One of the protein components of lens fiber membranes is glyceraldehyde 3-phosphate dehydrogenase. FEBS Lett. 1982 Nov 8;148(2):263–266. doi: 10.1016/0014-5793(82)80821-1. [DOI] [PubMed] [Google Scholar]
- Li J. M., Hopper A. K., Martin N. C. N2,N2-dimethylguanosine-specific tRNA methyltransferase contains both nuclear and mitochondrial targeting signals in Saccharomyces cerevisiae. J Cell Biol. 1989 Oct;109(4 Pt 1):1411–1419. doi: 10.1083/jcb.109.4.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macioszek J., Anderson J. B., Anderson L. E. Isolation of chloroplastic phosphoglycerate kinase : kinetics of the two-enzyme phosphoglycerate kinase/glyceraldehyde-3-phosphate dehydrogenase couple. Plant Physiol. 1990 Sep;94(1):291–296. doi: 10.1104/pp.94.1.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McMorrow E. M., Bradbeer J. W. Separation, purification, and comparative properties of chloroplast and cytoplasmic phosphoglycerate kinase from barley leaves. Plant Physiol. 1990 Jun;93(2):374–383. doi: 10.1104/pp.93.2.374. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer-Siegler K., Mauro D. J., Seal G., Wurzer J., deRiel J. K., Sirover M. A. A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8460–8464. doi: 10.1073/pnas.88.19.8460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Minaschek G., Gröschel-Stewart U., Blum S., Bereiter-Hahn J. Microcompartmentation of glycolytic enzymes in cultured cells. Eur J Cell Biol. 1992 Aug;58(2):418–428. [PubMed] [Google Scholar]
- Morell M. K., Bloom M., Knowles V., Preiss J. Subunit Structure of Spinach Leaf ADPglucose Pyrophosphorylase. Plant Physiol. 1987 Sep;85(1):182–187. doi: 10.1104/pp.85.1.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagy E., Rigby W. F. Glyceraldehyde-3-phosphate dehydrogenase selectively binds AU-rich RNA in the NAD(+)-binding region (Rossmann fold). J Biol Chem. 1995 Feb 10;270(6):2755–2763. doi: 10.1074/jbc.270.6.2755. [DOI] [PubMed] [Google Scholar]
- Perucho M., Salas J., Salas M. L. Identification of the mammalian DNA-binding protein P8 as glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem. 1977 Dec;81(3):557–562. doi: 10.1111/j.1432-1033.1977.tb11982.x. [DOI] [PubMed] [Google Scholar]
- Razdan K., Heinrikson R. L., Zurcher-Neely H., Morris P. W., Anderson L. E. Chloroplast and cytoplasmic enzymes: isolation and sequencing of cDNAs coding for two distinct pea chloroplast aldolases. Arch Biochem Biophys. 1992 Oct;298(1):192–197. doi: 10.1016/0003-9861(92)90112-a. [DOI] [PubMed] [Google Scholar]
- Ronai Z., Robinson R., Rutberg S., Lazarus P., Sardana M. Aldolase-DNA interactions in a SEWA cell system. Biochim Biophys Acta. 1992 Feb 28;1130(1):20–28. doi: 10.1016/0167-4781(92)90456-a. [DOI] [PubMed] [Google Scholar]
- Sytnik A. I., Chumachenko Y. V., Demchenko A. P. Spectroscopic evidence for NADH-induced conformational changes in rabbit muscle aldolase. Biochim Biophys Acta. 1991 Aug 30;1079(2):123–127. doi: 10.1016/0167-4838(91)90116-h. [DOI] [PubMed] [Google Scholar]
- Vishwanatha J. K., Jindal H. K., Davis R. G. The role of primer recognition proteins in DNA replication: association with nuclear matrix in HeLa cells. J Cell Sci. 1992 Jan;101(Pt 1):25–34. doi: 10.1242/jcs.101.1.25. [DOI] [PubMed] [Google Scholar]
- Walla O. J., de Groot E. J., Schweiger M. On the molecular mechanism of the circadian clock. The 41,000 M(r) clock protein of Chlorella was identified as 3-phosphoglycerate kinase. J Cell Sci. 1994 Feb;107(Pt 2):719–726. [PubMed] [Google Scholar]