Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Jun;108(2):693–701. doi: 10.1104/pp.108.2.693

Characterization and Physiological Function of Class I Low-Molecular-Mass, Heat-Shock Protein Complex in Soybean.

T L Jinn 1, Y M Chen 1, C Y Lin 1
PMCID: PMC157390  PMID: 12228501

Abstract

Examination of an ammonium sulfate-enriched fraction (70-100% saturation) of heat-shock proteins (HSPs) by nondenaturing polyacrylamide gel electrophoresis revealed the presence of a high molecular mass complex (280 kD) in soybean (Glycine max) seedlings. This complex cross-reacted with antibodies raised against soybean class I low-molecular-mass (LMW) HSPs. Dissociation of the complex by denaturing polyacrylamide gel electrophoresis showed the complex to contain at least 15 polypeptides of the 15-to 18-kD class I LMW HSPs that could be detected by staining, radiolabeling, and western blotting. A similar LMW-HSP complex was observed in mung bean (Vigna radiata L.; 295 kD), in pea (Pisum sativum L.; 270 kD), and in rice (Oryza sativa L.; 310 kD). The complex was stable under high salt conditions (250 mM KCI), and the integrity was not affected by 1% Nonidet P-40 and 3 [mu]g/ML RNase treatment. The size of the isolated HSP complex in vitro was conserved to 55[deg]C; however, starting at 37.5[deg]C, it changed to higher molecular forms in the presence of soluble proteins. The isolated HSP complex was able to protect up to 75% of the soluble proteins from heat denaturation in vitro.

Full Text

The Full Text of this article is available as a PDF (3.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson L. -O., Borg H., Mikaelsson M. Molecular weight estimations of proteins by electrophoresis in polyacrylamide gels of graded porosity. FEBS Lett. 1972 Feb 1;20(2):199–202. doi: 10.1016/0014-5793(72)80793-2. [DOI] [PubMed] [Google Scholar]
  2. Arrigo A. P., Ahmad-Zadeh C. Immunofluorescence localization of a small heat shock protein (hsp 23) in salivary gland cells of Drosophila melanogaster. Mol Gen Genet. 1981;184(1):73–79. doi: 10.1007/BF00271198. [DOI] [PubMed] [Google Scholar]
  3. Arrigo A. P., Pauli D. Characterization of HSP27 and three immunologically related polypeptides during Drosophila development. Exp Cell Res. 1988 Mar;175(1):169–183. doi: 10.1016/0014-4827(88)90264-9. [DOI] [PubMed] [Google Scholar]
  4. Arrigo A. P., Suhan J. P., Welch W. J. Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol Cell Biol. 1988 Dec;8(12):5059–5071. doi: 10.1128/mcb.8.12.5059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Arrigo A. P., Welch W. J. Characterization and purification of the small 28,000-dalton mammalian heat shock protein. J Biol Chem. 1987 Nov 15;262(32):15359–15369. [PubMed] [Google Scholar]
  6. Augusteyn R. C., Koretz J. F. A possible structure for alpha-crystallin. FEBS Lett. 1987 Sep 28;222(1):1–5. doi: 10.1016/0014-5793(87)80180-1. [DOI] [PubMed] [Google Scholar]
  7. Bentley N. J., Fitch I. T., Tuite M. F. The small heat-shock protein Hsp26 of Saccharomyces cerevisiae assembles into a high molecular weight aggregate. Yeast. 1992 Feb;8(2):95–106. doi: 10.1002/yea.320080204. [DOI] [PubMed] [Google Scholar]
  8. Chen Q., Osteryoung K., Vierling E. A 21-kDa chloroplast heat shock protein assembles into high molecular weight complexes in vivo and in Organelle. J Biol Chem. 1994 May 6;269(18):13216–13223. [PubMed] [Google Scholar]
  9. Chou M., Chen Y. M., Lin C. Y. Thermotolerance of isolated mitochondria associated with heat shock proteins. Plant Physiol. 1989 Feb;89(2):617–621. doi: 10.1104/pp.89.2.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Edelman L., Czarnecka E., Key J. L. Induction and Accumulation of Heat Shock-Specific Poly(A) RNAs and Proteins in Soybean Seedlings during Arsenite and Cadmium Treatments. Plant Physiol. 1988 Apr;86(4):1048–1056. doi: 10.1104/pp.86.4.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Helm K. W., LaFayette P. R., Nagao R. T., Key J. L., Vierling E. Localization of small heat shock proteins to the higher plant endomembrane system. Mol Cell Biol. 1993 Jan;13(1):238–247. doi: 10.1128/mcb.13.1.238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hsieh M. H., Chen J. T., Jinn T. L., Chen Y. M., Lin C. Y. A class of soybean low molecular weight heat shock proteins : immunological study and quantitation. Plant Physiol. 1992 Aug;99(4):1279–1284. doi: 10.1104/pp.99.4.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ingolia T. D., Craig E. A. Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2360–2364. doi: 10.1073/pnas.79.7.2360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jakob U., Gaestel M., Engel K., Buchner J. Small heat shock proteins are molecular chaperones. J Biol Chem. 1993 Jan 25;268(3):1517–1520. [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Lin C. Y., Roberts J. K., Key J. L. Acquisition of Thermotolerance in Soybean Seedlings : Synthesis and Accumulation of Heat Shock Proteins and their Cellular Localization. Plant Physiol. 1984 Jan;74(1):152–160. doi: 10.1104/pp.74.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lindquist S., Craig E. A. The heat-shock proteins. Annu Rev Genet. 1988;22:631–677. doi: 10.1146/annurev.ge.22.120188.003215. [DOI] [PubMed] [Google Scholar]
  18. Mansfield M. A., Key J. L. Synthesis of the low molecular weight heat shock proteins in plants. Plant Physiol. 1987 Aug;84(4):1007–1017. doi: 10.1104/pp.84.4.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Merck K. B., Groenen P. J., Voorter C. E., de Haard-Hoekman W. A., Horwitz J., Bloemendal H., de Jong W. W. Structural and functional similarities of bovine alpha-crystallin and mouse small heat-shock protein. A family of chaperones. J Biol Chem. 1993 Jan 15;268(2):1046–1052. [PubMed] [Google Scholar]
  20. Minton K. W., Karmin P., Hahn G. M., Minton A. P. Nonspecific stabilization of stress-susceptible proteins by stress-resistant proteins: a model for the biological role of heat shock proteins. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7107–7111. doi: 10.1073/pnas.79.23.7107. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES